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ABSTRACT
Layer-2 protocols can assist Ethereum’s limited throughput, but glob-
ally broadcasting layer-2 data limits their scalability. The Dankshard-
ing evolution of Ethereum aims to support the selective distribution
of layer-2 data, whose availability in the network is verified using
randomized data availability sampling (DAS). Integrating DAS into
Ethereum’s consensus process is challenging, as pieces of layer-2
data must be disseminated and sampled within four seconds of the
beginning of each consensus slot. No existing solution can support
dissemination and sampling under such strict time bounds.

We propose PANDAS, a practical approach to integrate DAS with
Ethereum under Danksharding’s requirements without modifying its
protocols for consensus and node discovery. PANDAS disseminates
layer-2 data and samples its availability using lightweight, direct
exchanges. Its design accounts for message loss, node failures, and
unresponsive participants while anticipating the need to scale out
the Ethereum network. Our evaluation of PANDAS’s prototype in a
1,000-node cluster and simulations for up to 20,000 peers shows that
it allows layer-2 data dissemination and sampling under planetary-
scale latencies within the 4-second deadline.
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1 INTRODUCTION
Ethereum, the largest blockchain supporting smart contracts, cur-
rently supports adding fewer than a few tens of transactions per
second to its main (layer-1) chain. Complementarily to layer-1 scal-
ability improvements [33, 57], expanding support for layer-2 proto-
cols [30] is now a priority for the Ethereum community [23].

Layer-2 protocols such as side chains and rollups have the poten-
tial to process large amounts of transactions [30, 38]. These protocols
periodically produce compressed or batched layer-2 transaction data,
which they make available via the layer-1 blockchain. For instance,
participants in an optimistic rollup can download this data, verify its
correctness, and submit fraud proofs [26, 40, 53].

The throughput of layer-2 protocols depends on how much data
they can attach to layer-1 blocks. Previously, the only solution was

adding layer-2 data as costly calldata transactions. These transac-
tions competed for permanent block space with other layer-1 trans-
actions, such as ETH transfers and DeFi interactions. In March 2024,
the EIP-4844 (Proto-Danksharding1) proposal [10] introduced the
notion of blobspace. Layer-2 data can now be shared as opaque
binary objects (blobs). Blobs are broadcast separately and refer-
enced by blob-carrying transactions in the block, which include
cryptographic commitments to their content. Nodes participating in
consensus verify these commitments and make blob data available
to layer-2 participants for a limited time (4,096 epochs, ∼18 days).
While improving over calldata transactions regarding costs and sup-
ported volume, EIP-4844 still requires blob data to be broadcast and
received by all nodes.

A significant upcoming step towards scaling support for layer-2
data in Ethereum is implementing data availability sampling (DAS).
The Ethereum Danksharding1 [24] roadmap plans to support up to
32 MB blob data referenced by each layer-1 block.

To avoid broadcasting this volume of data globally, blob data is
erasure-coded, split, and distributed as collections of cells, so that
each node holds only a fraction of the data. This shift introduces a
new challenge: no single node can independently verify the avail-
ability of the full blob. To address this, Ethereum plans to adopt data
availability sampling (DAS), wherein nodes collect random sample
cells from the network until they reach overwhelming confidence that
the complete data can be reconstructed. The Danksharding parame-
ters imply sending 140 MB of erasure-coded cells to the network,
with each node randomly sampling 73 cells (40 KB).

Integrating DAS and Ethereum consensus is a challenge. The
need for each node to collect randomly selected samples results in a
multitude of exchanges over high-latency links. At the same time,
Ethereum consensus imposes tight time constraints. A new block is
generated every 12 seconds. A committee must validate each new
block within the first four seconds after its creation. To avoid changes
to the consensus protocol, DAS must also be completed within four
seconds, allowing committee members to attest block validity and
blob data availability simultaneously.

1Danksharding is named after Dankrad Feist, an Ethereum researcher. Proto-
danksharding is named after him and Diederik Loerakker (protolambda).
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Several approaches are under discussion for integrating DAS
with Ethereum consensus, e.g., EIP-7594 (PeerDAS) [5], Subnet-
DAS [14], or FullDAS [42]. These leverage peer-to-peer networks al-
ready used by other Ethereum functions, particularly GossipSub [64],
a broadcasting network that pre-establishes dissemination overlays
and uses them as channels for gossiping data. There is a discrepancy
between the high costs of establishing new channels and the random-
ized nature of DAS. Multi-hop gossiping also has inherently high la-
tency. These two factors lead these proposals to suggest that random
sampling happens after the validation of blocks by the committee,
i.e., past the 4-second deadline. Completing sampling after commit-
tee validation may reverse validation decisions due to the delayed
detection of blob data unavailability. This requires modifications to
Ethereum’s consensus to account for such decision-revert possibil-
ities. This also impacts finality (i.e., how long before a block can
be considered immutable) as pending data availability verifications
delay decisions. Finally, the possibility of reverting past consensus
opens the door to new attacks based on ex-ante reorganizations [15].

Contribution. We demonstrate that DAS can be integrated with the
existing Ethereum consensus while meeting the Danksharding ob-
jectives. Dissemination and sampling of blob data can occur within
the first four seconds of a consensus slot. This allows the committee
to confirm blob data availability and block data correctness simul-
taneously and removes the need to adapt Ethereum’s consensus to
delayed availability decisions.

We present PANDAS, a peer-to-peer protocol that supports DAS
in Ethereum. PANDAS builds upon the following key features:
• It aligns with recent Ethereum evolutions, including Proposer-

Builder Separation (PBS) [25, 34], which introduces powerful
builders responsible for preparing block and blob data and
ordinary proposers elected by Proof-of-Stake consensus [22].
PANDAS leverages builders for efficient seeding of blob data.
• It uses Ethereum nodes to host and sample blob data us-

ing peer-to-peer interactions. In contrast to other propos-
als [5, 14, 42], PANDAS employs direct (one-hop) commu-
nication, using connectionless networking (UDP). Interac-
tions adapt to nodes’ unavailability and faults, meeting the
4-second deadline in adverse environments or under inconsis-
tent network views by different participants.
• PANDAS supports Ethereum’s objectives of openness, decen-

tralization, and scalability. Nodes’ and builders’ bandwidth
requirements align with the typical capacities of home servers
and cloud instances, and do not increase with system size.

We implement PANDAS over libp2p [4], the network stack of
the Ethereum Geth client [3], and deploy 1,000 nodes on an 80-server
cluster using representative emulated WAN latencies. Additionally,
we utilize a simulator whose results are cross-validated against pro-
totype deployments. This enables us to confidently explore results
for up to 20,000 nodes.

Our evaluation shows that PANDAS meets the 4-second sampling
deadline at all nodes at moderate scales and for the vast majority of
nodes at large scales, while maintaining low load on builders and
nodes. In contrast, baseline solutions based on GossipSub [64] or the
Kademlia DHT [50] do not scale as well, incurring higher overhead
and failing to meet the 4-second deadline even at moderate network
sizes. Experiments involving a significant fraction of unresponsive

nodes and inconsistent views further demonstrate that PANDAS’s
operations are robust against faults, meeting the 4-second deadline
for the majority of nodes even when up to 50% of the nodes are
misbehaving, and systematically detect data unavailability.

Outline. This paper is organized as follows. We present prelimi-
naries about Ethereum, layer-2 protocols, and PBS (Section 2). We
detail the DAS principles and the Danksharding roadmap and an-
alyze the associated networking and communication requirements
(Section 3). We present our model and assumptions, and detail our
design objectives (Section 4). PANDAS uses a deterministic assign-
ment of blob data to nodes (Section 5). It operates in three phases,
from the seeding of blob data by a builder to nodes consolidation
of this data and its sampling (Section 6). PANDAS uses direct and
efficient but unreliable UDP communications. An adaptive fetching
protocol arbitrates between request redundancy and time constraints
(Section 7). We evaluate PANDAS and compare it to baselines (Sec-
tion 8). We discuss our results (Section 9) before covering related
work (Section 10) and concluding (Section 11).

2 PRELIMINARIES
We provide an overview of Ethereum, its consensus, the Proposer-
Builder Separation principle, and layer-2 protocols.

Ethereum. Ethereum is an open blockchain using Proof-of-Stake
(PoS) consensus [22]. Holders of ETH, Ethereum’s virtual currency,
can lock 32 ETH (their stake) or more to operate a validator, i.e., a
virtual entity participating in the validation of new blocks.

Time in Ethereum is divided into slots of 12 seconds and epochs
of 32 slots. In every slot, a new block is added to the blockchain.
A subset of validators is deterministically selected to participate
in each consensus slot. One of them, the proposer, is responsible
for forming and spreading a new block. Some validators produce
attestations of this new block, while others collect these attestations
and publish aggregate decisions. As a result, consensus is split into
three phases: (1) the broadcast of a new block and its verification
by the committee; (2) the propagation and collection of attestations;
and (3) the generation and broadcast of aggregate decisions. Each
phase accounts for a third of the slot duration, i.e., 12/3 = 4 seconds.

Servers called full nodes, or simply “nodes” for the rest of this
paper, participate in the Ethereum network. Nodes can, but do not
have to, host validators. A node is identified by its IP address and
a public key, which are shared through Ethereum Node Records
(ENR) propagated through the network and stored in the underlying
Kademlia DHT [43, 50]. While nodes can collect all ENRs by crawl-
ing the DHT [12, 20, 58, 63], the association between a node and a
specific validator should not be public [35]. Deanonymizing the link
between the two leads to security threats such as DDoS or targeted
abuse of slashing mechanisms [54]. All nodes, whether they host a
validator or not, use the consensus committee’s aggregate decisions
to determine whether a block is accepted.

The dissemination of new blocks, attestations, and aggregate
decisions is supported by Gossipsub [64], a peer-to-peer overlay that
enables multi-hop, controlled flooding of data.

Proposer-Builder Separation. Forming new blocks is increasingly
computationally expensive, particularly with the rising importance
of Maximal Extractable Value or MEV [31]. Any node hosting a
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Figure 1: Proposer-Builder Separation (PBS). The proposer,
elected based on stake, selects a block among those prepared by
builders. The block is broadcast by gossip to all nodes.

validator that can be elected as a proposer would need to provision a
powerful server. Preventing low-stake participants unable to do so
from participating in consensus leads to the concentration of power
among a limited number of actors. Proposer-Builder Separation
(PBS), illustrated in Figure 1, addresses this risk by separating the
role of building a block and the role of proposing it for consensus.
This enables a few dedicated builders to form new blocks while
maintaining decentralized consensus among many lightweight nodes
that host validators. With PBS, the node supporting the proposer
selects one of the blocks prepared by builders. The block is then
broadcast to all nodes using Gossipsub. Today, PBS is responsible for
around 90% of Ethereum block creation [34, 46], principally through
the MEV-Boost network [28]. Builders receive block construction
fees for blocks selected by proposers and accepted by consensus;
therefore, they are incentivized to produce correct blocks.

Layer-2 protocols. The throughput of Ethereum’s chain (i.e., layer-
1) is limited to the number of transactions that can fit in a block.
Layer-2 protocols move some of the transaction handling and valida-
tion processes to a separate layer while benefiting from the security
and decentralization of the layer-1 chain. There exist many variants
of layer-2 protocols [30, 38].

Rollups are exemplary layer-2 solutions that process transactions
off-chain. They publish transaction state in a compressed form, to-
gether with a commitment to this state, via a call to a smart contract
in a regular layer-1 transaction. Rollup variants include optimistic
ones [26] posting compact hashes of transactions’ states, e.g., Arbi-
trum [40] and Optimism/Bedrock [53], and ZK rollups [19] posting
zero-knowledge proofs of validity, e.g., ZkSync [49] or Polygon [55].
The volume of layer-2 transactions that can be anchored to the layer-
1 chain is directly linked to the supported volume of blob data. This
data needs to be available for a sufficient time for a protocol’s par-
ticipants to verify it (e.g., verifying the ZK proof [19, 49, 55] or
generating a fraud proof [26, 40, 53]). Unlike regular layer-1 transac-
tions, layer-2 data does not need to persist indefinitely nor be verified
for correctness by layer-1 nodes.

3 DATA AVAILABILITY SAMPLING
Ethereum’s current mechanism for attaching layer-2 data to layer-1
blocks is EIP-4844 (Proto-Danksharding) [10]. It attaches a limited
number of data blobs (binary objects) to each block. This blob data
is broadcast to all nodes. Nodes hosting committee members must
validate the corresponding commitments contained in blob-carrying
transactions. To keep the costs of operating a node reasonable and
preserve decentralization, EIP-4844 limits the number of 128-KB
blobs to 3 (on average) to 6 (maximum) or 0.375 to 0.75 MB of data.

tx1
tx2
...

txn
txs

new block

transactions

extended blob (140 MB)layer-2 data  

KZG 
proof

blob (32 MB) 

Cx,y

KZGP
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512

KZG 
commitment
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Figure 2: Builder preparatory operations for DAS. 32 MB of
data is aggregated in a blob of 256×256 cells, extended to 512×512
cells using erasure coding. Each resulting cell includes a proof
(KZGP) linking it with the Kate-Zaverucha-Goldberg commit-
ment (KZGC) in the corresponding blob-carrying transaction.

extended blob (140 MB)

sampling

73 random cells (40 KB)
✔

Figure 3: Each node samples 73 randomly chosen cells.

Danksharding [24] is a roadmap towards much more (32 MB)
blob data attached to each block. It is intimately linked to PBS and
relies on builders’ computational and networking power to collect,
aggregate, and share layer-2 data. With such volumes, fully dissem-
inating blob data to all nodes is no longer realistic. Instead, each
node receives and stores a subset (shard) of it. For an individual
node, receiving a subset does not guarantee the availability of the
complete blob data. Data Availability Sampling (DAS) enables this
verification. It consists of three phases. First, the blob is extended
using erasure coding. Second, each shard of extended blob data is
distributed to a subset of nodes for hosting. Third, nodes collect sam-
ples, allowing them to consider the data they do not host available
(or reconstructable) with an overwhelming probability.

Figure 2 details the construction of blob data. The blob aggregates
32 MB of data, split into cells of 512 B, organized as a 256× 256 ma-
trix. Releasing only a subset of blob data is a data withholding attack.
The base blob is highly amenable to such an attack, as sharing all
but one cell makes some data unavailable, threatening the security of
layer-2 protocols. To prevent data withholding and allow data recon-
struction after losses, the blob is extended using a two-dimensional
Reed-Solomon erasure code [65]. Each row and column doubles in
size but can now be reconstructed from any 50% of its cells. The
resulting extended blob is now a 512 × 512-cell matrix. In addition
to the 512 B of data, each cell includes a 48 B Kate-Zaverucha-
Goldberg proof (KZGP) [41]. This proof links the cell’s content to
a commitment (KZGC) registered in a layer-1 blob-carrying trans-
action. In total, the extended blob is (512 × 512) × (512 + 48) = 140
MB in size including 12 MB of KZGPs.

Following the dissemination of extended blob data, nodes verify
its availability by attempting to download randomly chosen cells,
as illustrated by Figure 3. Collecting more random samples means
higher confidence in the availability or reconstructability of blob data.
The number of cells to sample depends on the maximum acceptable
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Figure 4: The minimal data enabling reconstruction (left), and
the maximal data preventing it (right).

rate of false positives, i.e., of incorrectly determining availability, as
we detail next.

The minimal amount of data necessary to enable reconstruction is
half of the cells for either 256 distinct rows or 256 distinct columns,
as illustrated by Figure 4-left (note that collecting any 256 × 256 =
65, 536 cells may not provide this guarantee). The maximal amount
of data that can be shared while preventing reconstruction is the
512×512 matrix minus a 257×257 square sub-matrix, as illustrated by
Figure 4-right. If a fraction 𝑝 of cells was not shared in the network,
the probability of not hitting an unavailable cell with 𝑠 samples is
(1 − 𝑝)𝑠 . The false positive probability for availability sampling
is, therefore, upper-bounded by

∏𝑠−1
𝑖=0 1 − 257×257

512×512−𝑖 . Discussions in
the Ethereum community [21] suggest using 𝑠 = 73 samples, which
gives an upper bound false positive probability lower than 10−9. We
use this value of 𝑠 = 73 in the remainder of the paper, corresponding
to 73 × 560B = 40 KB worth of samples collected per node.

4 PANDAS: OBJECTIVES AND OVERVIEW
PANDAS is a peer-to-peer protocol integrating DAS without requir-
ing modifications to Ethereum. It ensures that extended blob data
is propagated to the network and sampled within 4 seconds of the
block’s creation. This section presents our assumptions, details our
objectives, and gives an overview of PANDAS.

4.1 Model and Assumptions
This work is based on the following models and assumptions.

System model. The network comprises 𝑁 nodes. Aligned with
Ethereum, the system is open, but each node 𝑛𝑖 ∈ 𝑁 is identified
by an ID 𝑖, i.e., a cryptographic hash of its public key. Nodes pe-
riodically advertise to store (and refresh) their ENR records in the
underlying Kademlia DHT. The ENR of a node contains its ID, pub-
lic key, and contact information (IP and port). Nodes can be reached
directly using this contact information.

The assignment of validators to nodes must remain unknown [35].
Therefore, it must be impossible to distinguish nodes that host val-
idators from those that do not. To maintain decentralization, nodes
must have commodity hardware and network requirements (i.e., a
small home server with a 25 Mbps network connection [1]).

Dedicated builders propose blocks. For every slot, the elected pro-
poser selects one block from a builder 𝑏. Builders have significantly
better capacity and connectivity than nodes (e.g., a medium-range
cloud instance with a recent multicore CPU and 10 Gbps network
upload capacity). The selected builder 𝑏 is responsible for sending
extended blob data to the network of nodes. After that, nodes interact
peer-to-peer to exchange this data for retrieval and DAS.

Network views. Each node, including builders, maintains a list of
all nodes in the system as its view𝑉 , i.e.,𝑉𝑏 is builder 𝑏’s knowledge
of existing nodes, and 𝑉𝑛1 is that of a node 𝑛1. Views are filled by
periodically crawling the DHT [20], which typically takes about a
minute [12, 58, 63]. Views can be inconsistent (for any two nodes 𝑛1
and 𝑛2, we do not assume that 𝑉𝑛1 = 𝑉𝑛2 , and similarly for builders).
They may also be incomplete (𝑉 ∩ 𝑁 ⊆ 𝑁 ) and contain departed
nodes (𝑉 − 𝑁 ≠ ∅). However, thanks to the periodic crawls, views
constantly converge towards the actual set of nodes.

Fault/attack model. Nodes may crash (fail-silent [56]) or refuse
to answer incoming requests. Builders are rational and follow their
economic interests. They aim to obtain block construction rewards
while spending as few resources as possible. A selected builder can
attempt a data withholding attack, i.e., avoid sharing some or all
of the blob data to save on operational cost or because it did not
produce it. However, it does not attempt to send incorrect data to
the network, as doing so would be against its economic interests (i.e,
this will be detected when checking KZGP and lead to no rewards,
while still incurring bandwidth costs).

4.2 Objectives
The primary objective of PANDAS is to ensure that dissemination
and sampling happen within four seconds of creating a block, and
layer-2 clients easily retrieve blob data. We set the following goals:

• [Robustness] Sampling must meet the 4-second deadline
even with a large fraction of unresponsive nodes and/or when
nodes and builders have inconsistent views.
• [Scalability] Timing guarantees must hold with increasing

system size, and the load imposed on nodes and builders must
remain compatible with hardware profiles recommended for
decentralization [1].
• [Flexibility] Participating entities may be free to implement

local strategies for interacting with other system members,
aligning with their financial incentives.

We target the tight fork-choice rule [16], i.e., DAS sampling
is required before attesting to a block by committee members: a
block with valid transactions but unavailable data is attested as
invalid. As a result, we do not modify the consensus protocol beyond
adding sampling as a verification step for nodes hosting committee
member validators. This contrasts with the trailing fork-choice rule
that postpones sampling to later, and requires non-trivial changes
to consensus to be able to revert blocks with unavailable blob data.
Similarly, we do not wish to modify Ethereum’s discovery protocols
(i.e., the DHT holding ENRs) and assume nodes use unmodified
crawl mechanisms to collect their views [12, 58, 63].

4.3 PANDAS in a nutshell
The high-level principles of PANDAS are illustrated by Figure 5. At
the beginning of a slot, the node hosting the elected proposer selects
a block from one of the builders (➊). This block is disseminated
via a dedicated, system-wide GossipSub channel (➋). At the same
time, the same node requests the builder to publish blob data in the
network. The builder seeds the network with extended blob cells,
using direct communication to nodes in its view (➌). Every node is
assigned a subset of cells that it must keep in custody for the rest of
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Figure 6: Timeline of events within a slot. Starting from the
selection of a new block by the proposer (time 0, ➊), two concur-
rent processes start for nodes that must both terminate within
4 seconds: block dissemination (➋) and extended blob data dis-
semination (➌), consolidation, and sampling (➍).

the network. The builder may send only a subset of this assigned
data to each node directly. To serve all assigned data, nodes fetch
missing cells from other nodes through consolidation (➍). In parallel,
nodes select 73 cells randomly and send requests to nodes whose
responsibility includes them, implementing the sampling phase.

Figure 6 represents the timeline of operations. The dissemination
and verification of block and blob data are concurrent. Nodes initiate
consolidation and sampling when they receive their seed cells from
the builder. A node supporting an active validator can vote for a
block if the block verification and the data availability sampling are
successful before the 4-second deadline.

As ENRs do not allow distinguishing between nodes supporting
validators and nodes that do not, all correct nodes are expected to
custody data as long as they are registered in the DHT. We also as-
sume all correct nodes perform DAS. In particular, we avoid having
only committee members performing DAS, as it would reveal the
association between validators in the committee and nodes [35].

Communication between all actors in PANDAS is based on one-
way UDP networking with no signalling overhead (i.e., there is no

extended blob
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<latexit sha1_base64="Gt2zepv22fL3/GYl4xnWqna4uKg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0IPtev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atVa/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAABo2h</latexit>n1

<latexit sha1_base64="BUDmfR+D1mNAnL8ckUkfaQj7LRM=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEWo8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpgQ3ooFxxq+4CZJ14OalAjuag/NUfxiyNUBomqNY9z02Mn1FlOBM4K/VTjQllEzrCnqWSRqj9bHHqjFxYZUjCWNmShizU3xMZjbSeRoHtjKgZ61VvLv7n9VIT3vgZl0lqULLlojAVxMRk/jcZcoXMiKkllClubyVsTBVlxqZTsiF4qy+vk/ZV1atVa/fXlYabx1GEMziHS/CgDg24gya0gMEInuEV3hzhvDjvzseyteDkM6fwB87nDzKajbQ=</latexit>ca
<latexit sha1_base64="aft0iXv9bVx3JMiBPunzpLppp8o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEWo8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpgQ2CQbniVt0FyDrxclKBHM1B+as/jFkaoTRMUK17npsYP6PKcCZwVuqnGhPKJnSEPUsljVD72eLUGbmwypCEsbIlDVmovycyGmk9jQLbGVEz1qveXPzP66UmvPEzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqler1u6vKw03j6MIZ3AOl+BBHRpwB01oAYMRPMMrvDnCeXHenY9la8HJZ07hD5zPHzQejbU=</latexit>cb

<latexit sha1_base64="wLhor8FpX+q3hJC8ITMrRIVfhko=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEWo8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ3YoFxxq+4CZJ14OalAjuag/NUfxiyNUBomqNY9z02Mn1FlOBM4K/VTjQllEzrCnqWSRqj9bHHqjFxYZUjCWNmShizU3xMZjbSeRoHtjKgZ61VvLv7n9VIT3vgZl0lqULLlojAVxMRk/jcZcoXMiKkllClubyVsTBVlxqZTsiF4qy+vk/ZV1atVa/fXlYabx1GEMziHS/CgDg24gya0gMEInuEV3hzhvDjvzseyteDkM6fwB87nD0x8jcU=</latexit>rc

<latexit sha1_base64="yN+BZ+iK74pSulPeNzz6cxcNO7U=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseCF48V7Qe0oWw2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKUw6LpfTmltfWNzq7xd2dnd2z+oHh51TJJpxtsskYnuBdRwKRRvo0DJe6nmNA4k7waTm7nffeTaiEQ94DTlfkxHSkSCUbTSvR6Gw2rNrbsLkL/EK0gNCrSG1c9BmLAs5gqZpMb0PTdFP6caBZN8VhlkhqeUTeiI9y1VNObGzxenzsiZVUISJdqWQrJQf07kNDZmGge2M6Y4NqveXPzP62cYXfu5UGmGXLHloiiTBBMy/5uEQnOGcmoJZVrYWwkbU00Z2nQqNgRv9eW/pHNR9xr1xt1lrekWcZThBE7hHDy4gibcQgvawGAET/ACr450np03533ZWnKKmWP4BefjG04AjcY=</latexit>rd

Figure 7: Assignment 𝜎 of cells to nodes. Node 𝑛1 is assigned
columns 𝑐𝑎 and 𝑐𝑏 and rows 𝑟𝑐 and 𝑟𝑑 in epoch 𝑒. Any node 𝑛2
that knows 𝑛1 deterministically determines its assigned cells,
regardless of the rest of its view 𝑉𝑛2 \ 𝑛1.

establishment of connections or keep-alive messages). We stress
that all Ethereum nodes already use UDP in the discovery protocol
required to join the network [29]. Blob data is public and, therefore,
sent unencrypted, avoiding a time-consuming encrypted channel
establishment. Messages are authenticated with a digital signature
using the recipient’s public key. KZGPs further allow the authenticity
of the received blob data to be verified. Peer-to-peer requests may
fail silently due to packet loss or nodes that are unresponsive or have
failed. To alleviate this and meet the deadline, PANDAS relies on
builders adopting efficient seeding strategies, reconstructing cells
using the erasure code, and nodes employing an adaptive fetching
strategy that adapts request redundancy and aggressiveness to the
available time budget.

Similarly, the impact of incorrect nodes that do not participate
in custody and consolidation is mitigated by redundancy. Incorrect
nodes that forfeit the sampling phase only reduce the system load.

In the following sections, we detail the components of PANDAS.
We start with the deterministic association between blob data and
nodes (Section 5). Then, we present the three phases of seeding, con-
solidation, and sampling (Section 6). We finally detail the adaptive
fetching strategy (Section 7).

5 CELL TO NODES ASSIGNMENT
The first component of PANDAS is an assignment between blob data
and nodes. A function 𝜎 (𝑛𝑖 ) returns a list of cells from the 512×512.
Node 𝑛𝑖 is tasked with their custody, i.e., hosting and serving these
cells for sampling queries and access by layer-2 participants.

All nodes and builders know 𝜎 , as illustrated by Figure 7. We
set two requirements for 𝜎: it must be deterministic and short-lived.
Determinism means 𝜎 (𝑛𝑖 ) must be computed identically by two
nodes 𝑛𝑎 and 𝑛𝑏 even if 𝑉𝑛𝑎 ≠ 𝑉𝑛𝑏 .2 Short-liveness means that
the assignment must change periodically and be unpredictable. This
prevents the emergence of attacks based on eclipsing nodes in charge
of specific cells [48, 66] or censorship of specific data [61].

Even though adjacent cells likely contain data for distinct layer-2
protocols, storing them together on the same node favors efficient
reconstruction, as it requires fetching multiple cells from the same
row or column. Thus, PANDAS assigns complete rows and columns
to each node. The number of rows and columns assigned to each
node is a globally known parameter. By default, we use eight distinct

2Using consistent hashing, as in DHTs, does not meet this requirement: if 𝑛𝑎 knows a
node 𝑛𝑐 that 𝑛𝑏 does not know, 𝑛𝑎 may associate cells to 𝑛𝑐 that 𝑛𝑏 associates to 𝑛𝑎 .
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rows and columns per node. Each node hosts 8× 512 + 8× (512− 2)
cells, i.e., 8, 176 × (512 + 48) =≃ 4.4 MB of data.3

To enable determinism and short-liveness, the assignment 𝜎 is
a pseudo-random sortition. This is the exact mechanism used to
select committees in the Ethereum consensus. For every epoch, a
globally verifiable, pseudo-random sortition decides which nodes
will be members of committees or proposers in each slot. This
decision uses a pseudo-random number generator (PRNG) and an
epoch seed known one epoch in advance (32 slots, ≃6.4 minutes)
from a combination of random values proposed by validators (i.e.,
the “RANDAO” state [18]). PANDAS builds upon this existing
mechanism by seeding the assignment function 𝜎 for an epoch 𝑒

with its corresponding epoch seed s𝑒 . We extend the definition of 𝜎
to include the epoch number, i.e., function 𝜎 (𝑛𝑖 , 𝑒) generates eight
distinct rows and eight distinct columns for 𝑛𝑖 using a PRNG seeded
by s𝑒 .

6 PANDAS PROTOCOL PHASES
We detail the PANDAS protocol phases: seeding, consolidation, and
sampling, illustrated in Figures 5 & 6. The latter two are concurrent.

6.1 Seeding phase
The interactions start with an initial seeding phase. This phase starts
when a proposer selects a block from a builder 𝑏. In parallel to
sending the block to the network via gossip, the proposer asks 𝑏 to
seed the corresponding blob data to the network.

All nodes know the proposer’s identity and public key before the
slot starts. However, they do not know who 𝑏 is. Due to the strict
time constraints, nodes cannot wait to receive the block via gossip to
learn this information and start accepting blob data. To allow nodes
to distinguish legitimate blob data, the proposer provides the builder
with a digital signature binding 𝑏’s identity (including its IP address)
to the proposer’s private key. This signature is attached to every
seeding message.4

An objective of PANDAS is flexibility, i.e., the possibility for
different actors to implement various strategies. This principle ap-
plies to blob seeding strategies. Builders are rational; their interest
is in operational costs, particularly outgoing bandwidth. They also
wish to maximize profits through block production rewards, which
depend on the success of DAS.

A naive approach could be to have the selected builder 𝑏 send
all cells in 𝜎 (𝑛, 𝑒) to every node 𝑛 ∈ 𝑉𝑏 . The necessary outgoing
bandwidth now depends on the size of the builders’ view, close
to or equal to that of the entire network. With ≃4.4 MB per node
(eight rows and eight columns) and, say, 10,000 known nodes, the
necessary bandwidth budget is 42.9 GB (343.7 Gb). With a 10 Gbps
connection, as available with modern, medium-end cloud instances,
the process takes more than 30 seconds, largely missing the 4-second
deadline.

3While this is the expected amount of data stored by a node to enable DAS, nothing
prevents collecting more. Typically, nodes participating in layer-2 protocols may obtain
all relevant data and cache it for other participants in their network.
4While the proposer’s signature allows verifying the legitimacy of 𝑏, the correctness of
the received cells’ KZGP from 𝑏 cannot be checked against the KZGC before receiving
the block and its blob-carrying transactions. It is, however, not in the builder’s interest
to send fake blob data that will eventually cause it to lose the rewards.
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<latexit sha1_base64="UhtGKd8rNkKDDK+/+XMpf+Pp1cY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2pQG5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4Y2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9erd/XKg03j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/8ZjZI=</latexit>n4
<latexit sha1_base64="LjAaTf433kr+EJ2gMbR4dK7nrwE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9W/7JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVa9Wrd1fVepuHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwD9lY2R</latexit>n3

<latexit sha1_base64="qB64SbrOw3+XwIfohCUad91EDz8=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4KolI9Vjw4rEF+wFtKJvtpF272YTdjVhCf4EXD4p49Sd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/Pbj6g0j+W9mSToR3QoecgZNVZqPPVLZbfizkFWiZeTMuSo90tfvUHM0gilYYJq3fXcxPgZVYYzgdNiL9WYUDamQ+xaKmmE2s/mh07JuVUGJIyVLWnIXP09kdFI60kU2M6ImpFe9mbif143NeGNn3GZpAYlWywKU0FMTGZfkwFXyIyYWEKZ4vZWwkZUUWZsNkUbgrf88ippXVa8aqXauCrX3DyOApzCGVyAB9dQgzuoQxMYIDzDK7w5D86L8+58LFrXnHzmBP7A+fwB5GGM9Q==</latexit>x

<latexit sha1_base64="sqIhL4KVWvV2gBckLGle3uIl4D8=">AAACBnicbVDLSgMxFM34rPU16lKEYBHqpsxIqS4LblxWsA/oDEMmzbShSWZIMmIZZuXGX3HjQhG3foM7/8a0nYW2HggczrmHm3vChFGlHefbWlldW9/YLG2Vt3d29/btg8OOilOJSRvHLJa9ECnCqCBtTTUjvUQSxENGuuH4eup374lUNBZ3epIQn6OhoBHFSBspsE8eoEcF9BQdclT1MhFkrjeItarnXn4e2BWn5swAl4lbkAoo0ArsLxPGKSdCY4aU6rtOov0MSU0xI3nZSxVJEB6jIekbKhAnys9mZ+TwzCgDGMXSPKHhTP2dyBBXasJDM8mRHqlFbyr+5/VTHV35GRVJqonA80VRyqCO4bQTOKCSYM0mhiAsqfkrxCMkEdamubIpwV08eZl0Lmpuo9a4rVeaTlFHCRyDU1AFLrgETXADWqANMHgEz+AVvFlP1ov1bn3MR1esInME/sD6/AFXMphf</latexit>

x → ω({n1...4})
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<latexit sha1_base64="Gt2zepv22fL3/GYl4xnWqna4uKg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0IPtev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atVa/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAABo2h</latexit>n1
<latexit sha1_base64="4jeZjtm1pgsCCYz70fGNihGknZA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSg+pX+6WyW3HnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn81PnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTtCF4yy+vkla14tUqtfvLcv0mj6MAp3AGF+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwABio2i</latexit>n2

<latexit sha1_base64="UhtGKd8rNkKDDK+/+XMpf+Pp1cY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2pQG5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4Y2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9erd/XKg03j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/8ZjZI=</latexit>n4
<latexit sha1_base64="LjAaTf433kr+EJ2gMbR4dK7nrwE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9W/7JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVa9Wrd1fVepuHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwD9lY2R</latexit>n3 single

redundant
(k=2)
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<latexit sha1_base64="4jeZjtm1pgsCCYz70fGNihGknZA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSg+pX+6WyW3HnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn81PnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTtCF4yy+vkla14tUqtfvLcv0mj6MAp3AGF+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwABio2i</latexit>n2

<latexit sha1_base64="UhtGKd8rNkKDDK+/+XMpf+Pp1cY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2pQG5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4Y2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9erd/XKg03j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/8ZjZI=</latexit>n4

<latexit sha1_base64="LjAaTf433kr+EJ2gMbR4dK7nrwE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9W/7JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVa9Wrd1fVepuHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwD9lY2R</latexit>n3

<latexit sha1_base64="Gt2zepv22fL3/GYl4xnWqna4uKg=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0IPtev1xxq+4cZJV4OalAjka//NUbxCyNUBomqNZdz02Mn1FlOBM4LfVSjQllYzrErqWSRqj9bH7qlJxZZUDCWNmShszV3xMZjbSeRIHtjKgZ6WVvJv7ndVMTXvsZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1atVa/eXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwAABo2h</latexit>n1
<latexit sha1_base64="4jeZjtm1pgsCCYz70fGNihGknZA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSg+pX+6WyW3HnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn81PnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTtCF4yy+vkla14tUqtfvLcv0mj6MAp3AGF+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwABio2i</latexit>n2

<latexit sha1_base64="UhtGKd8rNkKDDK+/+XMpf+Pp1cY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2pQG5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4Y2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9erd/XKg03j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/8ZjZI=</latexit>n4
<latexit sha1_base64="LjAaTf433kr+EJ2gMbR4dK7nrwE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9W/7JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVa9Wrd1fVepuHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwD9lY2R</latexit>n3

direct seeding
by builder

seeding 
policies:

extended blob

Figure 8: Three seeding policies. The “minimal” policy splits the
first half of each row or column amongst known peers having it
in their assignment. The “single” policy splits the entire row or
column. The “redundant” policy shares each split to 𝑘 nodes.

A better approach is to send a fixed amount of data to the net-
work and determine a level of redundancy for the cells within each
row and column. For a row (or column) 𝑥 , 𝑏 decides which cells of
𝑥1, . . . , 𝑥512 to send to the network and with what degree of redun-
dancy. It dispatches these cells to the nodes assigned to 𝑥 in the cur-
rent epoch 𝑒 that it knows, i.e.,𝑉𝑏 (𝑥) = {𝑛 ∈ 𝑉𝑏 | 𝑥 ∈ 𝜎 (𝑛, 𝑒)}. Each
node in 𝑉𝑏 (𝑥) receives only a subset of its assigned cells. Therefore,
each node must still fetch the missing cells from its peers, a process
we call consolidation that we detail in the following subsection.

Seeding policies. Figure 8 illustrates three example policies.
A “minimal” policy sends a single copy of half of the cells of

𝑥 , i.e., 𝑥1, . . . , 𝑥256 (i.e., the minimal amount of data necessary to
reconstruct the row or column). The builder splits 𝑥1, . . . , 𝑥256 into
|𝑉𝑏 (𝑥) | parcels of adjacent cells and distributes them randomly to up
to 256 nodes in𝑉𝑏 (𝑥). It repeats the process for all rows and columns.
The total amount of data sent out is 256 × 256 × (512 + 48) = 35 MB
of data. This strategy is exceptionally fragile to message loss. We
primarily use it as a baseline for the builders’ costs.

A second, “single” policy leverages the redundancy allowed by
the erasure code. It operates similarly to the minimal policy but
sends a single copy of all of the cells of each row or column 𝑥 , split
to up to 512 nodes in 𝑉𝑏 (𝑥). In total, it sends out the size of the
extended blob, i.e., 140 MB. This strategy’s rationale is that even
if half of the cells are lost, nodes can still reconstruct the row or
column using the erasure code.

The third, “redundant” strategy, adds further redundancy by send-
ing 𝑘 copies of each cell. It starts from the single policy, splitting
the cells of 𝑥 between nodes in |𝑉𝑏 (𝑟 ) |. Then, each parcel is further
assigned to 𝑘 − 1 randomly selected distinct nodes in |𝑉𝑏 (𝑟 ) |. We use
𝑘 = 8 by default for this strategy. The outgoing bandwidth usage for
the builder is, therefore, 1,120 MB = 1.09 GB of data. This is pre-
cisely the volume of data a builder would use to send every row and
every column to GossipSub [64] channels for dissemination, as the
typical fanout for the root of GossipSub dissemination trees is eight
peers [62]. As using GossipSub channels is the approach proposed
by concurrent designs to integrate DAS in Ethereum [5, 14, 42], this
allows us to compare the performance of PANDAS under the same
resource utilization.

6.2 Consolidation phase
The objective of the second phase, consolidation, is for a node 𝑛 to
rapidly get hold of all the cells of rows and columns assigned by

6



extended blob

cells to consolidate

cells to sample

seeded cells

<latexit sha1_base64="4jeZjtm1pgsCCYz70fGNihGknZA=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkmR6rHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSg+pX+6WyW3HnIKvEy0kZcjT6pa/eIGZpxBUySY3pem6CfkY1Cib5tNhLDU8oG9Mh71qqaMSNn81PnZJzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTtCF4yy+vkla14tUqtfvLcv0mj6MAp3AGF+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwABio2i</latexit>n2

<latexit sha1_base64="UhtGKd8rNkKDDK+/+XMpf+Pp1cY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkVI8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2pQG5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4Y2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68TtpXVa9erd/XKg03j6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifP/8ZjZI=</latexit>n4

<latexit sha1_base64="LjAaTf433kr+EJ2gMbR4dK7nrwE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lUqseCF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB9W/7JcrbtWdg6wSLycVyNHol796g5ilEVfIJDWm67kJ+hnVKJjk01IvNTyhbEyHvGupohE3fjY/dUrOrDIgYaxtKSRz9fdERiNjJlFgOyOKI7PszcT/vG6K4Y2fCZWkyBVbLApTSTAms7/JQGjOUE4soUwLeythI6opQ5tOyYbgLb+8SloXVa9Wrd1fVepuHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OZI58V5dz4WrQUnnzmGP3A+fwD9lY2R</latexit>n3

received

received

received

(optional) 
consolidation boost

received from builder: to be fetch from peers:

Figure 9: Consolidation and sampling phases must fetch cells
from other nodes. Information from the builder consists of initial
cells and an optional consolidation boost map informing 𝑛 what
other nodes received as seed data.

𝜎 (𝑛, 𝑒). Thanks to the erasure code, collecting half of the cells of a
given row or column is sufficient to consolidate it.

Consolidation starts at 𝑛 upon reception of seed cells from the
builder 𝑏. If 𝑛 receives a request from another node linked to a slot
for which it has not yet received its seed cells, it activates a timer
(we use a default value of 400 ms). Consolidation starts without seed
data if the timer expires before 𝑛 receives cells from 𝑏 because of a
packet loss or because 𝑏 does not know 𝑛 yet (i.e., 𝑛 ∉ 𝑉𝑏 ).

The orchestration and timing of requests for fetching missing
cells are delegated to PANDAS’s fetching strategy, shared with the
sampling phase, and detailed in the next section.

To fetch cells missing for consolidation, 𝑛 contacts peers with
overlapping rows and columns,𝐶𝑛 (𝑥) = {𝑛′ ∈ 𝑉𝑛 | 𝑥 ∈ 𝜎 (𝑛, 𝑒)∧𝑥 ∈
𝜎 (𝑛′, 𝑒)}. In a view with 10,000 nodes assigned eight rows and eight
columns each, each row or column is assigned to 10000×(8+8)

512×2 ≃ 156
nodes on average. Thus,𝐶𝑛 (𝑥) contains about 624 peers. Depending
on the builder’s seeding strategy, each may have received only a
subset of the data. Asking many peers for cells may increase the
chances of “hitting” the ones that received the needed cells via
seeding, but it leads to many duplicates. In contrast, asking only
a few random peers may require the selected nodes to finish their
consolidation to respond, leading to a lengthy response delay.

A fast and effective consolidation aligns with the economic inter-
ests of the builder. If consolidation is fast and efficient, it improves
the odds that sampling finishes on time, and the builder may afford
to send less data to the network. We improve these two factors with
consolidation boosting, as illustrated by Figure 9. The builder 𝑏
attaches to the seeding message to 𝑛 a map CB. For every row and
column 𝑥 ∈ 𝜎 (𝑛, 𝑒), CB(𝑥) lists the cells received by other nodes
𝑛′ ∈ 𝑉𝑏 where 𝑥 ∈ 𝜎 (𝑛′, 𝑒). The consolidation boosting map CB
allows 𝑛 to know which nodes are likely to receive specific cells
faster and prioritize them for the requests.

6.3 Sampling phase
The third phase of PANDAS is the sampling phase. It starts at the
same time as consolidation and takes place concurrently.

Node 𝑛 randomly selects 73 cells to sample. This selection must
be unpredictable (i.e., unlike 𝜎). For every sample, 𝑛 can determine
the nodes hosting an intersecting row or column in 𝑉𝑛 . In a 10,000-
node network, 156 nodes on average can have a copy of a given
cell. The selection of targets for sampling and the orchestration
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<latexit sha1_base64="zhIGpTkytGHZnaRE5Zvn9wDjG7o=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWAVXEhJpFQ3QsGNywr2AW0Ik+mkHTqThJkbsYS68VfcuFDErX/hzr9x+lho64ELh3Pu5d57gkRwDY7zbeWWlldW1/LrhY3Nre0de3evoeNUUVansYhVKyCaCR6xOnAQrJUoRmQgWDMYXI/95j1TmsfRHQwT5knSi3jIKQEj+fYB+O5V2XFwB9gDZFKPzvDASK5vF52SMwFeJO6MFNEMNd/+6nRjmkoWARVE67brJOBlRAGngo0KnVSzhNAB6bG2oRGRTHvZ5IMRPjFKF4exMhUBnqi/JzIitR7KwHRKAn09743F/7x2CuGll/EoSYFFdLooTAWGGI/jwF2uGAUxNIRQxc2tmPaJIhRMaAUTgjv/8iJpnJfcSqlyWy5Wj2dx5NEhOkKnyEUXqIpuUA3VEUWP6Bm9ojfryXqx3q2PaWvOms3soz+wPn8A4g6VKw==</latexit>

t1 = 400ms, k1 = 1
<latexit sha1_base64="XDg8yJOXW4fyn/j5aFtxsY8KEzY=">AAACAXicbVDLSsNAFJ3UV62vqBvBzWAVXEhJilQ3QsGNywr2AW0Ik+mkHTp5MHMjllA3/oobF4q49S/c+TdO2iy09cCFwzn3cu89Xiy4Asv6NgpLyyura8X10sbm1vaOubvXUlEiKWvSSESy4xHFBA9ZEzgI1oklI4EnWNsbXWd++55JxaPwDsYxcwIyCLnPKQEtueYBuNWrqmXhHrAHSAM1OcOjTHLNslWxpsCLxM5JGeVouOZXrx/RJGAhUEGU6tpWDE5KJHAq2KTUSxSLCR2RAetqGpKAKSedfjDBJ1rpYz+SukLAU/X3REoCpcaBpzsDAkM172Xif143Af/SSXkYJ8BCOlvkJwJDhLM4cJ9LRkGMNSFUcn0rpkMiCQUdWkmHYM+/vEha1Ypdq9Ruz8v14zyOIjpER+gU2egC1dENaqAmougRPaNX9GY8GS/Gu/Exay0Y+cw++gPj8wfjg5Us</latexit>

t2 = 200ms, k2 = 2
<latexit sha1_base64="lSC3aY321QizVXhbTngfiMDs0To=">AAACDHicbVDLSgMxFM34rPVVdekmWAUXpczYUt0UCm5cVrAPaEvJpJk2NJkZkjtiGeYD3Pgrblwo4tYPcOffmGm70NYDIYdzziW5xw0F12Db39bK6tr6xmZmK7u9s7u3nzs4bOogUpQ1aCAC1XaJZoL7rAEcBGuHihHpCtZyx9ep37pnSvPAv4NJyHqSDH3ucUrASP1cHvpxqVBOqo5t4y6wB4ilTgp43C9VS+lVrpZNyi7aU+Bl4sxJHs1R7+e+uoOARpL5QAXRuuPYIfRiooBTwZJsN9IsJHRMhqxjqE8k0714ukyCz4wywF6gzPEBT9XfEzGRWk+ka5KSwEgveqn4n9eJwLvqxdwPI2A+nT3kRQJDgNNm8IArRkFMDCFUcfNXTEdEEQqmv6wpwVlceZk0L4pOpVi5Ledrp/M6MugYnaBz5KBLVEM3qI4aiKJH9Ixe0Zv1ZL1Y79bHLLpizWeO0B9Ynz+P6piv</latexit>

t3,4 = 100ms, k3 = 3, k4 = 4

Figure 10: Node 𝑛 determines a set of nodes to query at each
round. The adaptive strategy adjusts the redundancy of queries
(i.e., the number of nodes queried for each missing cell) and the
timeout before the next round.

and scheduling of requests are delegated to PANDAS’s fetching
algorithm that we describe next.

7 ADAPTIVE FETCHING
Both consolidation and sampling require fetching cells from other
nodes. This collection is handled as a single task by the adaptive
fetching algorithm we detail in this section.

The fetching algorithm inputs a set of cell identifiers, as illustrated
by Figure 9. In addition, it may receive a consolidation boost map
CB. The algorithm aims to retrieve all cells before the 4 s deadline.

Target nodes are identified by a node 𝑛 from its view𝑉𝑛 using the
assignment 𝜎 . Some of these nodes may be offline or unresponsive.
As PANDAS uses connectionless communications using UDP, the
network may silently lose queries or response messages. Sending
queries for cells sequentially bears the risk of missing the deadline.
On the contrary, sending queries to multiple nodes that hold a copy
of each desired cell generates a swarm of messages in the network.
This leads to congestion risks, suggesting the need for a compromise
between cautious fetching initially and a more aggressive approach
with more redundant queries as the deadline approaches.

Consolidation processes at different nodes are executed concur-
rently. A queried node 𝑛𝑖 may have a cell 𝑐 in its assignment 𝜎 (𝑛𝑖 , 𝑒)
but have not yet received it from the builder or through consolidation.
Nodes receiving a query for assigned cells they do not yet have buffer
this query and respond when they can (if the cells are never received,
they never respond, i.e., there is no negative acknowledgment). Thus,
a querying node may allow sufficient slack time for queried nodes
to respond, particularly early in the slot.

Fetching algorithm. Fetching operates in rounds, as illustrated in
Figure 10. It adapts query redundancy and timeouts as time pro-
gresses and the deadline nears. For this purpose, each round 𝑖 is
associated with a timeout 𝑡𝑖 and a redundancy factor 𝑘𝑖 . Algorithm 1
details the process at a node 𝑛. The FETCH procedure receives a
set of cells to fetch 𝐹 and an optional consolidation boost map CB
(Algorithm 1). Node 𝑛 considers as queryable nodes all of its view
𝑉𝑛 upon the initial call to FETCH, saved as a working copy 𝑄 (Algo-
rithm 1). Any node in 𝑄 will be queried at most once. The fetching
process is in three steps: scoring, planning, and execution.

In the scoring step (Algorithms 1 to 1), queryable nodes in 𝑄 are
assigned a score, i.e., the number of their assigned cells still missing
for 𝑛 (Algorithm 1). If a consolidation boost was received, nodes are
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Algorithm 1 Adaptive fetching at node 𝑛 in epoch 𝑒.
1: procedure FETCH(𝐹 , CB)
2: 𝑄 ← 𝑉𝑛 ; 𝑖 ← 1 # Queryable nodes and round number
3: while 𝐹 ≠ ∅ ∧ 𝑖 < 𝑖max do # Until all fetched or too many rounds
4: for each 𝑞 ∈ 𝑄 do # Assign scores to queryable nodes
5: 𝑞cells = {𝜎 (𝑞, 𝑒 ) ⊆ 𝐹 } # Cells of interest ...
6: 𝑞score = ∥𝑞cells ∥ # ... score is number of cells
7: if CB𝑞 ≠ ∅ then # If node in consolidation boost map ...
8: 𝑞score ← 𝑞score + ( |𝐹 ∩ CB𝑞 | ) × cb_boost
9: # ... boost score for each cell received by seeding

10: sort 𝑄 by decreasing node score as 𝑞1, . . . , 𝑞 |𝑄 |
11: 𝑃 = ∅;𝑈 = 𝐹 ; 𝑗 = 1 # Query Plan and cells Under redundancy
12: while𝑈 ≠ ∅ ∧ 𝑗 ≤ |𝑄 | do # Should/can plan more queries
13: if (𝑞 𝑗 .cells ∩𝑈 ) ≠ ∅ then # At least one cell of interest
14: 𝑃 ← 𝑃 ∪ (𝑞 𝑗 , 𝑞 𝑗 .cells ∩𝑈 ) # Plan query
15: 𝑈 ← {𝑐 ∈ 𝐹 | | {𝑝 ∈ 𝑃 | 𝑐 ∈ 𝑝.cells} | < 𝑘𝑖 }
16: # Update set of cells with insufficient redundancy
17: 𝑗 ← 𝑗 + 1 # Consider next node in sorted 𝑄
18: for each 𝑝 in 𝑃 do # Send out queries from the query plan
19: QUERYCELLS(𝑝.node,𝑝.cells) # UDP async. query
20: 𝑄 ← 𝑄 \ 𝑝.node # Nodes are queried only once
21: SLEEP (ti ) ; 𝑖 ← 𝑖 + 1 # Wait before next round
22: return (𝐹 ≠ ∅) # Success if all cells fetched within round limit
23: procedure UPONRECEIVE(𝐶) # Receiving a set of cells𝐶
24: 𝐹 ← 𝐹 \𝐶 # Receive new cells
25: while ∃ row or column 𝑥 with [256 : 512) cells do # Can use code
26: 𝑥 ← RECONSTRUCT(𝑥 ,𝑅) # Reconstruct full row/column
27: 𝐹 ← 𝐹 \ {𝑐 ∈ 𝑥 } # No need to fetch reconstructed cells

given a score boost of cb_boost for each cell declared as seeded by
the builder and missing from 𝐹 (Algorithm 1). The set of queryable
nodes is then sorted by decreasing score values (Algorithm 1).

The planning step (Algorithms 1 to 1) prepares the set of queries
as a set 𝑃 . Each planned query 𝑝 ∈ 𝑃 is associated with a node
𝑝.node and queried cells 𝑝.cells. Each missing cell from 𝐹 must be
queried from 𝑘𝑖 nodes. Starting from the node with the highest score,
𝑞1, the step greedily selects nodes with cells of interest as long as
this criterion is not met. For this, it maintains a set 𝑈 listing the
cells for which insufficient redundancy currently exists in 𝑃 . A node
𝑞 𝑗 is planned to be queried for cells with insufficient redundancy
(Algorithm 1), before updating 𝑈 (Algorithm 1).

Finally, the execution step sends out the queries asynchronously
(Algorithms 1 to 1) before waiting for 𝑡𝑖 ms before the next round.
A queried node is removed from 𝑄 and is not used again. Upon
correct reception by the target node, the handler either responds
with the queried cells if all are available or buffers the query for
a delayed reply. The response is received by the UPONRECEIVE

function as a set of cells 𝐶 (Algorithms 1 to 1).5 When receiving
new cells, the algorithm checks if an incomplete row or column now
contains 256 or more cells (Algorithm 1) and, if so, reconstructs
them (Algorithm 1).

Default parameters. The fetching algorithm is primarily parame-
terized by the round durations and query redundancy vectors 𝑡 and
𝑘 , as well as the score boost for consolidation cb_boost. We use the
following universal parameters, but stress that nodes could select
them differently, e.g., based on local connectivity.

In the first round, 𝑖 = 1, the strategy aims to maximize the num-
ber of cells received (and reconstructed) using as few messages as
possible (i.e., 𝑘1 = 1). We use a duration of 𝑡1 = 400ms based on es-
timated time for the builder to send out initial cells and on inter-node
latencies, as we will detail in Section 8. In subsequent rounds, we

5For clarity, we omit in Algorithm 1 the verification checks performed when receiving
𝐶 (e.g., verifying the cells KZMPs if/when the block header is available).

reduce this time by half but no lower than 100ms, i.e., 𝑡2 = 200ms
and ∀𝑗 ≥ 3, 𝑡 𝑗 = 100ms (up to 𝑡50). Similarly, we increase the aggres-
siveness of queries by increasing the redundancy factor by two every
round until a maximum of 10, i.e., 𝑟2 = 2, 𝑟3 = 4, . . . ,∀𝑗 ≥ 6, 𝑟 𝑗 = 10.
Finally, we set cb_boost = 10, 000 to give an overwhelming advan-
tage to nodes with seeded cells of interest.

8 EVALUATION
We structure our evaluation around the following claims:

• C1: PANDAS completes DAS within 4 s and supports the
tight-fork choice rule under Danksharding requirements.
• C2: PANDAS bandwidth requirements for nodes are below

Ethereum suggestions for decentralization (25 Mbps [1]) and,
for builders, below typical cloud offerings (10 Gbps).
• C3: PANDAS satisfies C1 even under a high percentage of

unresponsive nodes and with highly inconsistent views.
• C4: PANDAS satisfies C1–C3 scaling up to 20,000 nodes.
• C5: Relying on existing peer-to-peer overlays (Gossipsub [64]

and Kademlia [50]) for DAS does not allow satisfying C1.

PANDAS is implemented in Go, extending libp2p [4], the
network stack of the Ethereum Geth client [3]. Block dissemination
relies on libp2p’s GossipSub implementation.

We aim to evaluate the PANDAS prototype in a real-world envi-
ronment and verify its scalability in large networks, up to 20,000
nodes. Achieving both objectives with the PANDAS prototype would
require a prohibitive amount of resources. We thus opt for a hybrid
approach. We deploy 1,000 instances of PANDAS in a cluster, em-
ulating representative WAN latencies. To evaluate PANDAS up
to 20,000 nodes, we use a simulator, whose accuracy is validated
against deployment results.

8.1 Prototype deployments
We run 1,000 PANDAS instances on a cluster of 80 servers, each
equipped with an 18-core Intel Xeon Gold 5220 CPU and 96 GB
of RAM. This level of consolidation (13 instances per server) was
selected through careful load testing to avoid CPU contention and
increased latencies compared to non-consolidated deployments.

Network emulation. We use network emulation using tc to repro-
duce WAN settings. There is no publicly available data on node-to-
node latencies in the Ethereum network. However, a recent large-
scale measurement campaign [45] has collected all-pair latencies
in IPFS [8], a planetary-scale storage system that shares the scale
and decentralization objectives of Ethereum. We use this trace for
our network emulation. Round-trip latencies range from 8 ms to
438 ms with an average of 64 ms. The topology contains 10,000
vertices, to which we assign nodes randomly. We limit each node
connection to 25 Mbps. We deploy a builder as a dedicated server,
with a connection capped to 10 Gbps, assigning it to a vertex in the
topology randomly selected among the 20% with the best average
latency to all other nodes, i.e., nodes likely deployed in a cloud. UDP
communication in the cluster is subject to a packet loss rate of 3%,
according to our observations.

Evaluation metrics. Our primary metric of interest is the distri-
bution of completion times for PANDAS’s three phases, from the
moment the builder is selected. The time to seeding is when a node
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Figure 11: Distribution of times for the three phases of PANDAS across all nodes, for the three seeding strategies. All times are from
the start of the slot, except for Figure 11b where time is counted from the reception of the seed cells (as shown by Figure 11a).

has received its initial seed data. Time to consolidation and time
to sampling refer to the periods when a node has received (or can
reconstruct) its assigned eight rows and columns, and its 73 ran-
dom cells, respectively. Additionally, we monitor the bandwidth
costs and the number of messages for all nodes and the builder. We
consider a fault-free scenario in this section, where all nodes partic-
ipate in the protocol and have a complete view of the system (i.e.,
∀𝑛 ∈ 𝑁,𝑉𝑛 = 𝑁 ). For all experiments, we present distributions over
10 slots (i.e., 10 cycles of seeding, consolidation, and sampling).

Phases timing. Figure 11 presents the distributions of times to seed-
ing, consolidation, and sampling. We consider the three seeding
strategies of Section 6.1: minimal, single, and redundant with 𝑘 = 8.
Only solid lines are of interest in this section; dashed ones represent
simulator results that we will discuss in the next section. We illus-
trate the distribution of the reception time of the block via a global
GossipSub channel (initiated by a randomly chosen node serving as
the proposer), for comparison purposes, in Figure 11a.

We observe that the time to seeding is similar for the three strate-
gies, as our builder’s available bandwidth is not a bottleneck (the
amount of data sent out is 36.6 MB, 149 MB, and 1,208 MB, re-
spectively, for the three strategies). We observe an impact on the tail
of the distributions: the maximum time to seeding is 700, 819, or
936 ms, respectively, for the three strategies (99th percentiles, or P99,
are 698, 705, and 715 ms). The “step” around 64 ms corresponds to
nodes assigned to well-connected vertices in the emulated topology,
which are typically nodes deployed in the same cloud and/or region
as the builder. Overall, all nodes receive their seed cells before the
end of the first second of the slot.

We present the time to consolidation both from the reception of
the seed data by a node (Figure 11b) and from the beginning of the
slot (Figure 11c). The builder provides the consolidation boosting
map to the nodes. We can observe the impact of the builder’s seeding
strategy. The minimal strategy results in a consolidation taking up to
2,2213 ms (P99=1,756 ms) from the reception of the seed data, and
the single strategy has a maximum time of 2,046 ms (P99=1,595 ms).
In contrast, the redundant strategy reduces this time to 1,985 ms
(P99=1,558 ms). Median times to consolidation for the minimal,
single, and redundant strategies (from the beginning of the slot) are
1,178 ms, 1,072 ms, and 869 ms, respectively.

The time to sampling distribution, our primary metric of interest,
is given by Figure 11d. This distribution depends on the builder’s
seeding strategy, which impacts the time to consolidation. The min-
imal strategy results in a maximum of 3,341 ms (P99=2,303 ms);
still, 100% of the nodes fetch their samples by the deadline. The
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Figure 12: Distribution of messages and traffic volume for fetch-
ing across nodes, for different seeding strategies.

single strategy also meets the deadline, with a maximum delay of
3,062 ms, (P99=2,068 ms). Finally, the redundant strategy matches
the deadline safely for all nodes, with a maximum of 3,009 ms
(P99=2,020 ms). The median times to sampling are, respectively,
1,235 ms, 1,122 ms, and 882 ms. The reduction in sampling times
with increased availability of seed cells (via increased redundancy)
is due to reduced contention on peer bandwidth, which in turn speeds
up the fetching operation. We observe, however, that if the block
dissemination latency (Figure 11a) were to be added to these times,
meeting the 4 s deadline would be at risk for many nodes, even with
the redundant strategy. This confirms our claim that DAS must start
concurrently to block dissemination if we are to integrate it with
consensus under the tight fork-choice rule.

Bandwidth consumption. Figure 12 presents the distribution of
the number of messages used by nodes in the fetching phase, and
the corresponding traffic volume, summed for both directions. The
redundant seeding strategy results in fewer messages exchanged
between nodes and, as a result, lower bandwidth requirements. This
is because more nodes already hold the requested cells, which re-
duces the need for retries (i.e., fewer rounds) during consolidation
and sampling. Even with the single seeding strategy, which only
marginally differs from the minimal one, the requirements are far
below the Ethereum recommendations of 25 Mbps; the maximum
traffic volumes are 2.26, 2, and 1.99 MB for the three strategies.

Fetching analysis. Table 1 presents an analysis of the progress
of fetching for the first four rounds. All values discussed in this
paragraph are averages over the 1,000 nodes, together with the
standard deviation. We use the redundant seeding strategy, and nodes
receive 2420 cells (± 180). Starting from 4,174, the number of
requested cells decreases as the coverage of 𝐹 (i.e., set of cells to
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Round 1 2 3 4

Messages sent 341± 20 261± 58 185± 35 113± 22
Cells requested 4174± 100 2426± 96 923± 63 294± 40
Replies received in round 228± 22 143± 14 120± 20 69± 25
Replies received after round 107± 39 114± 25 56± 20 61± 3
Cells received in round 2420± 180 949± 170 535± 82 191± 22
Cells received after round 1128± 113 1478± 91 383± 52 23± 8
Received cells duplicates 0± 0 187± 42 142± 29 64± 12
Cells reconstructed 615± 126 566± 90 86± 29 32± 17
Cumulative coverage of 𝐹 56% 81% 96% 99%

Table 1: Fetching algorithm performance in successive rounds
(values averaged over all nodes, ± is the standard deviation).
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Figure 13: Comparison of the performance of adaptive fetching,
as used by PANDAS, and a non-adaptive approach.

fetch) increases, either through reception or reconstruction (e.g.,
615 reconstructed cells in the first round). We distinguish between
replies received in a round 𝑖, i.e., before the timeout 𝑡𝑖 expires, and
after. The latter case leads to redundant requests but illustrates the
tradeoff between caution and eagerness Algorithm 1 implements.
A majority of requests result in replies before the timeout, and a
majority of cells are received on time in the round. Receptions after
the round generally occur with a significant delay; adjusting timeouts
to account for such tail latencies leads to lower success rates. While
Table 1 only shows the first four rounds—after which 99% of the
nodes have completed fetching—the process requires up to 6 rounds
for the slowest nodes (P90=3, P99=4).

Impact of adaptive fetching. We evaluate in Figure 13 the impact
of adaptive fetching. We consider the redundant seeding policy, i.e.,
the green distribution in Figure 13a is the same as in Figure 11d.
For comparison, we employ a constant fetching strategy, which
utilizes a fixed timeout for all rounds (𝑡 = 400 ms) and a fixed
redundancy (𝑘 = 1), as represented in black. The constant strategy
uses fewer messages, as it asks only a minimum of one node for each
missing cell in each round, and leaves more time for nodes to respond.
However, it drastically impacts the time to sampling, resulting in a
maximum of 4,129 ms (P99=3,513 ms, median=1,546 ms), and some
nodes miss the deadline. This illustrates the interest of dynamically
adapting aggressiveness and redundancy to cope with the tight time
constraints imposed by the tight fork-choice rule.

Comparison to alternative proposals. We finally compare our
approach to two alternative methods based on the use of existing
peer-to-peer protocols available in libp2p.
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Figure 14: Distribution of time to sampling and messages com-
pared to baselines based on GossipSub and the Kademlia DHT.

Some proposals [14, 42, 59], that we will further discuss in Sec-
tion 10, suggest using GossipSub [64] for the dissemination of rows
and columns (i.e., our seeding phase), but typically do not detail
how random sampling should happen. We instantiate this idea by
having all nodes subscribe to GossipSub channels corresponding to
each unit of custody—that is, each group of eight rows and eight
columns—they are assigned by 𝜎 . We disable explicit consolidation,
but instead rely on GossipSub’s gossiping within each channel to
disseminate the assigned cells, and use the same sampling phase as
in PANDAS. Therefore, the main difference is that the dissemination
of seed cells occurs through peer-to-peer gossip within each channel,
rather than through direct seeding by the builder as in PANDAS. In
this 1,000-node network, each GossipSub channel involves approx-
imately ∼ 16 nodes assigned to the corresponding unit of custody.
The builder sends 𝑘 = 8 copies of each unit of custody to the nodes
in the corresponding GossipSub channel, which is configured with
the default fanout of eight peers. As a result, the builder’s outgoing
traffic volume is the same as in the redundant seeding strategy of
PANDAS, i.e., eight times the total blob size.

Another proposed approach [13] is to use the Kademlia DHT [50]
for storing and retrieving cells using multi-hop routing. We imple-
ment it by mapping rows and columns to one dimension and splitting
it into parcels of 64 adjacent cells. Parcels are then stored in the
DHT by the builder using the put(key) operation. To ensure a fair
comparison with PANDAS and the GossipSub baseline, the builder
performs eight put(key) operations per parcel, storing it at each of
the eight closest peers to the hash of the parcel’s contents—therefore,
the builder uses the same total bandwidth as in the other approaches.
Nodes are responsible for the range of keys (and, therefore, parcels)
assigned by the DHT, and we disallow consolidation. Sampling uses
get(key) operations to fetch necessary parcels.

Figure 14 shows the distribution of time to sampling for PANDAS
using the redundant seeding strategy (𝑘 = 8) and for the two base-
lines, as well as the distribution of the number of messages. With
1,000 nodes, 24% of GossipSub nodes and 17% of DHT nodes fail
to complete sampling within the 4 s deadline. The average sampling
delay for GossipSub nodes is 3,660 ms (P99=3342 ms), while PAN-
DAS nodes complete sampling significantly faster, i.e., on average
in 882 ms (P99=1935 ms), with all nodes completing well within
the 4 s deadline. In terms of messaging, the DHT and GossipSub
baselines incur significantly higher overhead in the number of mes-
sages compared to PANDAS. On average, PANDAS, GossipSub,
and DHT nodes send 1,613, 2,370, and 3,021 messages. For the DHT
baseline, the messaging overhead of storing and retrieving parcels is
especially high due to multi-hop routing (i.e., DHT traversal).
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Figure 15: Simulation of seeding, consolidation, and sampling
times for PANDAS with a various number of nodes.

8.2 Large-scale simulations
In addition to the prototype deployment detailed in the previous
subsection, we implement PANDAS protocols in PeerSim [51], a
Java simulator for large-scale evaluation of peer-to-peer systems.
This implementation closely follows the one over libp2p. We also
implement the two baselines detailed above.

We simulate the same latency trace as for the deployment.6 We
also enforce a fixed 3% loss rate for UDP packets as experienced in
the testbed. When running on a server with 256 GB of memory, the
simulator can scale up to 20,000 nodes.

Simulator validation. Before considering larger scales, we validate
that the simulator results match those of the deployments. In all plots
of Section 8.1, dashed lines report the results obtained with 1,000
simulated nodes. In all cases, the two lines are (almost) indistinguish-
able. Our evaluations at smaller scales (not shown) have the same
property. The validation of simulation results at moderate scales
gives us confidence in the simulator’s ability to provide accurate
results at higher scales.

Scaling. We first investigate PANDAS’s scalability with 1,000 to
10,000 nodes and up to 20,000 nodes. Figure 15 presents the distri-
bution of times to seeding, consolidation, and sampling using the
redundant seeding strategy (Figure 15a) and the corresponding mes-
sages (Figure 15b) and bandwidth (Figure 15c). With 10,000 nodes,
the current scale of the Ethereum network [2], all nodes successfully
sample before the 4 s deadline. With 20,000 nodes, 10% fail to meet
the deadline, mapping to nodes with poor simulated connectivity
(connected from remote area of the geo-distributed network). We
identify the scattering of seed data and the cost of consolidation
as the primary reasons, as nodes have to contact more peers to col-
lect their rows and samples, and take more time before being able
to answer sampling requests. Nodes located in clouds do not suf-
fer from significantly higher times, highlighting the need to host
validator-hosting nodes in well-connected infrastructure.

The impact of the increasing scattering of seed cells with larger
network sizes is also reflected in Figure 15b and Figure 15c, which
show the number of messages and traffic volumes for fetching cells
during consolidation and sampling. The average number of messages
per node for networks of 1K, 3K, 5K, 10K, and 20K nodes is 1,956,
2,231, 2,247, 2,291, and 2,443, respectively. The corresponding peak
traffic volumes are 1.9, 2.1, 2.2, 2.2, and 2.4 MB. We observe that
even in the most demanding scenario with 20K nodes, the maximum

6When using more than 10,000 nodes, we reuse vertices randomly for the assignment.
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Figure 16: Simulation of blob dissemination time for PANDAS
and the two baselines, for various number of nodes.
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Figure 17: Simulation of time to consolidation and time to sam-
pling for increasing number of dead nodes and out-of-view nodes,
in a 10.000-node network.

traffic volume is transmitted in approximately 2.2 seconds, keeping
the average bandwidth requirement well within the 25 Mbps target.

Comparison to baselines. Figure 16 compares PANDAS to the
two baselines in scales up to 20,000 nodes. Results for 1,000 nodes
are consistent with the ones for testbed deployment reported in
Figure 14. While the GossipSub-based baseline meets the deadline
for a majority of nodes with 1,000 nodes, it fails to do so starting
with 5,000 nodes. However, it plateaus for higher node counts, as
GossipSub topics become more efficient with a higher number of
participants. The DHT-based baseline is unable to meet deadlines
for most nodes at all scales and shows linearly increasing times to
sampling for increased system sizes. For both systems, the gap to
PANDAS in terms of time-to-sampling latency widens as the system
size grows. The number of messages is also significantly higher for
the baselines than for PANDAS, with important variability for the
GossipSub-based baseline as the system size increases.

Behavior under faults. We evaluate PANDAS’s robustness under
two types of faults: dead nodes and out-of-view nodes. In the dead
nodes scenario, a fraction of nodes is assumed to have crashed and
do not respond to any messages. The builder and the remaining
correct nodes are unaware of these failures. Therefore, the builder
seeds data to all nodes, including the dead ones, and includes them
in consolidation boost maps. As a result, some seed cells are lost,
and correct nodes may attempt to contact dead nodes during fetching
which will lead to timeouts and retries. On the other hand, in the
out-of-view nodes scenario, all nodes are correct and receive their
assigned seed cells from the builder. However, each node only has an
incomplete view of the network, and these views are not consistent.
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For example, if 20% of nodes are out-of-view, each node is only
aware of a randomly chosen 80% of the full node set. This affects
both consolidation and sampling, as requests may fail due to the
sender lacking the knowledge of a suitable peer.

In Figure 17, we vary the proportion of dead or out-of-view nodes
from 0% to 80% (in 20% increments) and measure the impact on
both time to consolidation and sampling. The network size is 10,000
nodes. We observe that for 0%, 20%, 40%, 60%, and 80% of dead
nodes, 92%, 83%, 74%, 45%, and 27% of nodes complete sampling
within the 4-second deadline, respectively. In the case of out-of-view
nodes, for 0%, 20%, 40%, 60%, and 80% of nodes being out of view,
92%, 83%, 67%, 47%, and 25% of nodes complete sampling within
the deadline, respectively.

In both scenarios, we observe that beyond 50% dead or out-of-
view nodes, over half of the correct nodes fail to meet the deadline
which would prevent consensus from being reached and causing
the blockchain to stall. These scenarios are, however, unlikely in
practice and would impact other key mechanisms, such as block
dissemination, preventing consensus to succeed anyway.

Summary. Our evaluation using a prototype deployment and large-
scale simulations of PANDAS and two baselines confirmes our
claims. PANDAS supports DAS within 4 s for all nodes (up to
10,000) and the vast majority of them (for 20,000) and enable the
tight fork-choice rule (C1 and C4). The bandwidth requirements for
builders and nodes are below Ethereum recommendations and com-
patible with its decentralization objectives under the PBS principles
(C2 and C4). The evaluation of fault scenarios show that PANDAS
supports these claims with a large fraction of failed or out-of-view
nodes (C3 and C4). In contrast, the two baselines fail to meet these
criteria in particular as the system size increases (C5).

9 DISCUSSION
We discuss PANDAS and classical concerns in decentralized sys-
tems.

Impact of Sybils. A node in Ethereum, and thus PANDAS, does
not have to support validators to participate in peer-to-peer interac-
tions, e.g., block dissemination. This opens possibilities for Sybil
attacks, where an attacker operates multiple nodes to bias the system
operation.

Sybils can perform general attacks, where they join the DHT and
GossipSub channels and stop answering queries or forwarding data,
disrupting the system merely by their overwhelming presence. Our
evaluation shows that PANDAS is robust against many nodes that
ignore sampling and consolidation requests, provided the builder
uses sufficient redundancy in its seeding strategy. Proposals for
increasing IP diversity in Ethereum’s discovery mechanisms [43]
could strengthen this robustness.

A targeted use of Sybils consists of carefully placing them in the
peer-to-peer network to prevent specific nodes from interacting with
it (an Eclipse attack) or to censor specific information [36, 48, 61,
66]. PANDAS makes the network fully connected and randomized
exchanges, making Eclipse attacks irrelevant. This contrasts with
designs based on GossipSub trees, where an attacker could position
its Sybils as the first neighbors of the builder and disrupt the early
dissemination of blob data. Another targeted attack scenario targets
specific content. In PANDAS, disrupting the sharing of specific

blob data would require (1) knowing before blob data dissemination
which cell will contain such data and (2) positioning Sybil nodes in
the network to make the corresponding row and column difficult to
reconstruct (i.e., disallow fetching half of its cells). Condition (1)
does not hold as the cell location is known only upon reception of the
block. Condition (2) would require the attacker to generate enough
identities to control the corresponding row and column, which is
highly improbable considering that 𝜎 changes unpredictably every
6.5 minutes, less time than what ENR crawling requires.

Limiting openness. As one of PANDAS goals is to avoid modifi-
cation to Ethereum other mechanisms, it follows its open-network
design. An alternative design could limit participation to validator-
holding nodes and restrict other nodes to being only observers. This
would drastically reduce any potential risk associated with Sybil at-
tacks, as an attacker can only generate one identity for every 32 ETH
they hold. It would, however, limit decentralization by switching to a
semi-permissioned system, where only stakeholders can participate.
Proof-of-validator [39] is an anonymous credential scheme based
on zero-knowledge proofs (ZKP). It could enable this limitation if
integrated with node discovery, i.e., the crawl of the DHT for ENRs.
This approach would come at a significant complexity cost, even for
an observer (i.e., gathering the list of validators and verifying a ZKP
for every crawled ENR).

Handling free riders. Nodes using the system while contributing
minimal resources, or free riders, are unavoidable in decentralized
systems [37]. In Ethereum, block and blob building, proposal, and
validation are incentivized through monetary rewards; however, there
is no incentive for interactions within the peer-to-peer network (e.g.,
for correctly answering ENR discovery requests in the DHT). Simi-
larly, PANDAS does not have incentives for nodes to participate in
the consolidation, sampling, and hosting of blob data. Nodes hosting
committee members could even vote for blob availability without
sampling, if the expected rewards outweigh bandwidth costs.

Also departing from our objective of no modification to Ethereum,
a possible direction to include incentives for DAS operations would
be to integrate proof-of-custody mechanisms [27] and the associated
slashing mechanisms with consensus. Proof of custody is a negative
incentive in which the builder infrequently inserts in blob data a
cryptographic “bomb” targeted at a randomly-selected validator. A
node that attests to blob data with a bomb for itself is slashed for a
large amount of stake, making the correct behavior of downloading
and verifying data more profitable than free riding. As only nodes
holding stake can be targeted, and not observers, such a mechanism
would probably depend on proof-of-validator integration.

10 RELATED WORK
We start by detailing alternative proposals for implementing DAS in
Ethereum. Then, we explore the broader history and foundational
literature on data availability. Finally, we discuss earlier P2P tech-
niques designed for purpose-specific data dissemination.

Alternative DAS Proposals. The Ethereum community has so far
mainly explored gossip-based approaches to support DAS and the
Danksharding roadmap, primarily using GossipSub [64], where
each row and column is disseminated through a distinct channel with
long-lived subscriptions [11, 42, 59]. The scalability of this approach
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remains uncertain due to the large number of channels required and
potential security risks associated with long-lived node-to-channel
assignments [44]. More importantly, the slow, multi-hop propagation
of rows and columns resulted in proposals considering the removal of
random sampling from the critical path of consensus. Instead, these
approaches adopt a “lightweight” custody-based verification, where
nodes supporting committee members evaluate the availability of a
blob (and vote accordingly) based solely on the successful receipt
of their assigned rows and columns [14]. This approach provides
significantly weaker assurances of availability compared to random
sampling. By foregoing independent verification of randomly chosen
cells, validators risk being slashed or locked onto an unavailable
chain. This, in turn, could prevent them from forming a minority
chain or participating in a manual fork of the canonical chain under
social consensus in the event of a malicious majority.

Alternative network-layer mechanisms for DAS have also been
evaluated. A recent study [13] highlights the inefficiencies of us-
ing the Kademlia DHT [50] for DAS, particularly the overhead of
seeding cells to nodes involving traversing the DHT.

Data Availability. The idea of verifying data availability by sam-
pling a block extended with erasure coding was introduced by Al-
Bassam et al. [7] and later adopted by LazyLedger [6], since evolving
into Celestia. Celestia employs a centralized approach where valida-
tors, i.e., highly resourceful “super” nodes—retrieve and store the
complete blob data, while light clients sample the blob from these
super nodes. Unlike PANDAS’s collaborative approach, where sam-
pling and storage responsibilities are distributed among participants,
Celestia’s design results in overhead and costs that increase linearly
with participation and blob size. Recent work by Nazirkhanova et
al. [52] explores how erasure coding, combined with homomorphic
vector commitments, can ensure verifiable data retrieval in rollups
while maintaining storage and communication efficiency.

Recent work proposes alternative methods for node sampling
in DAS. Honeybee [67] focuses on Sybil-resistant peer sampling
via verifiable random walks. Honeybee assumes fetching random
cells requires contacting random nodes, whereas PANDAS selects
random cells and takes advantage of their deterministic assignment
to nodes. Honeybee’s interactive verification at each hop introduces
potential latency, making it less suitable for strict timing constraints.
Sheng et al. [60] propose an alternative approach where a group of
oracle nodes collectively store erasure-coded data blobs and provide
access to clients. Their work focuses on ensuring the integrity and
correctness of the coded blob and relies on at least half of the oracle
nodes being honest and reliable. In contrast, PANDAS can function
even under a supermajority of nodes failing or experiencing omission
faults.

Purpose-specific Data Dissemination Networks. One-hop commu-
nication in overlay networks was proposed in the early days of P2P
research [32]. The Interplanetary File System (IPFS) [8] adopted a
hybrid P2P networking approach by combining multi-hop search
(i.e., through a Kademlia DHT) and one-hop communication. More
specifically, each peer accesses a few directly connected peers to
perform a one-hop search and retrieve popular content [17]. The
DHT is used to discover peers hosting (less popular) content through
a slow, multi-hop search process. While IPFS supports one-hop
retrieval, it is not optimized for the DAS use case, where a large

number of directly connected peers must be efficiently utilized to
retrieve unpopular content in a timely manner, i.e., chunks of a data
blob each hosted by roughly the same number of peers.

Beyond IPFS, several studies explore optimizations for blockchain
and distributed systems that improve data dissemination efficiency.
Mercury [68] optimizes blockchain transaction dissemination using
network coordinates, while Perigee [47] improves Bitcoin’s gossip
efficiency. Similarly, Berendae et al. [9] propose Hyperledger Fabric
optimizations to reduce dissemination delay and improve fairness.
While these optimizations focus on transaction propagation rather
than DAS, they highlight the importance of optimizing dissemination
networks, which aligns with PANDAS’s objectives.

11 CONCLUSION
We presented PANDAS, a practical approach to integrated data avail-
ability sampling (DAS) in the consensus workflow of Ethereum
under the demanding Danksharding objectives. By favoring direct
and lightweight communications between nodes, builder-led blob
data dissemination, and adaptive fetching mechanisms, PANDAS
allows large amounts of layer-2 data to propagate in the Ethereum
network and be verified as available under the strict timing con-
straints imposed by Ethereum consensus.

This work opens interesting perspectives, among which is the
design of adaptive policies. We presented and evaluated different
fixed strategies for the builders and the nodes to follow. However, the
design could support automatic adaptation mechanisms that select
or update parameters based, for example, on observed networking
and fault ratio conditions.
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