Check for
Updates

Compute First Networking: Distributed Computing meets ICN

Michat Krol
University College London/UCLouvain
michal krol@uclouvain.be

David Oran
Network Systems Research & Design
daveoran@orandom.net

ABSTRACT

Modern distributed computing frameworks and domain-specific
languages provide a convenient and robust way to structure large
distributed applications and deploy them on either data center or
edge computing environments. The current systems suffer how-
ever from the need for a complex underlay of services to allow
them to run effectively on existing Internet protocols. These ser-
vices include centralized schedulers, DNS-based name translation,
stateful load balancers, and heavy-weight transport protocols. In
contrast, ICN-oriented remote invocation methodologies provide
an attractive match for current distributed programming languages
by supporting both functional programming and stateful objects
such as Actors. In this paper we design a computation graph rep-
resentation for distributed programs, realize it using Conflict-free
Replicated Data Types (CRDTSs) as the underlying data structures,
and employ RICE (Remote Method Invocation for ICN) as the exe-
cution environment. We show using NDNSim simulations that it
provides attractive benefits in simplicity, performance, and failure
resilience.

CCS CONCEPTS

» Networks — Naming and addressing; In-network process-
ing; Network architectures; Session protocols.

KEYWORDS

Information Centric Networks, Named Data Networking, in-network
processing, naming, thunks

ACM Reference Format:

Michat Krol, Spyridon Mastorakis, David Oran, and Dirk Kutscher. 2019.
Compute First Networking: Distributed Computing meets ICN. In 6th ACM
Conference on Information-Centric Networking (ICN ’19), September24-26,
2019, Macao, China. ACM, New York, NY, USA, 11 pages. https://doi.org/10.
1145/3357150.3357395

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICN ’19, September24-26, 2019, Macao, China

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6970-1/19/09...$15.00
https://doi.org/10.1145/3357150.3357395

67

Spyridon Mastorakis
University of Nebraska, Omaha
smastorakis@unomaha.edu

Dirk Kutscher
University of Applied Sciences Emden/Leer
dirk kutscher@hs-emden-leer.de

1 INTRODUCTION

Domain-specific distributed computing languages like LASP[17]
have gained popularity for their ability to simply express complex
distributed applications like replicated key-value stores and con-
sensus algorithms. Associated with these languages are execution
frameworks like Sapphire[32] and Ray[18] that deal with imple-
mentation and deployment issues such as execution scheduling,
layering on the network protocol stack, and auto-scaling to match
changing workloads. These systems, while elegant and generally
exhibiting high performance, are hampered by the daunting com-
plexity hidden in the underlay of services that allow them to run
effectively on existing Internet protocols. These services include
centralized schedulers, DNS-based name translation, stateful load
balancers, and heavy-weight transport protocols.

We claim that, especially for compute functions in the network,
it is beneficial to design distributed computing systems in a way
that allows for a joint optimization of computing and networking
resources by aiming for a tighter integration of computing and net-
working. For example, leveraging knowledge about data location,
available network paths and dynamic network performance can
improve system performance and resilience significantly, especially
in the presence of dynamic, unpredictable workload changes.

The above goals, we believe, can be met through an alternative
approach to network and transport protocols: adopting Information-
Centric Networking as the paradigm. ICN, conceived as a networking
architecture based on the principle of accessing named data, and
specific systems such as NDN[33] and CCNx[2] have accommo-
dated distributed computation through the addition of support for
remote function invocation [6, 10, 11, 29] and distributed data set
synchronization schemes such as PSync [34].

Introducing Compute First Networking (CFN) We propose
CEFN, a distributed computing environment that provides a general-
purpose programming platform with support for both stateless
functions and stateful actors. CFN can lay out compute graphs
over the available computing platforms in a network to perform
flexible load management and performance optimizations, taking
into account function/actor location and data location, as well as
platform load and network performance.

Use Case - Health Screening System We present a simple air-
port health screening system as a motivating use case for our frame-
work. Such a system can be deployed using simple microphones or
commodity mobile phones to detect people with highly-infectious
pulmonary diseases before they board a plane [24]. Pulmonary
ailments, including tuberculosis, cystic fibrosis, lower respiratory
infection and over a hundred others [9], account for four of the
top ten causes for death worldwide and coughing is a symptom of

https://doi.org/10.1145/3357150.3357395
https://doi.org/10.1145/3357150.3357395
https://doi.org/10.1145/3357150.3357395
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3357150.3357395&domain=pdf&date_stamp=2019-09-24

ICN ’19, September24-26, 2019, Macao, China

many of these ailments [20]. An efficient screening system could
substantially decrease spread of those diseases, but comes with
several challenges.

Constrained listening devices can be placed in various points
at the airport to collect sound samples, but the sound processing
requires significant CPU power. This processing includes of elimi-
nating any speech present in the audio for privacy protection while
retaining the cough sounds [12]. The audio sample is then analysed
to detect cough sounds [3] and extract multiple cough features such
as “wetness” or “dryness” [4]. Finally, coughs with similar features
sre clustered and analysed together, as coughing frequency could
be an important indicator of multiple aliments [9].

Our framework can enable the mobiles devices collecting audio
samples to use external computing resources with minimal code
changes and allow deployment without any specialized hardware
at the network edge.

CFN makes the following contributions:

(1) Marries a state-of-the art distributed computing framework to
an ICN underlay through RICE[10]. This allows the framework to
exploit important properties of ICN such as name-based routing
and immutable objects with strong security properties.

(2) Adopts the rigorous computation graph approach to represent-
ing distributed computations, which allows all inputs, state, and
outputs (including intermediate results) to be directly visible as
named objects. This enables flexible and fine-grained scheduling of
computations, caching of results, and tracking state evolution of
the computation for logging and debugging.

(3) Maintains the computation graph using Conflict-free Replicated
Data Types (CRDTs) and realizes them as named ICN objects. This
enables implementation of an efficient and failure-resilient fully-
distributed scheduler.

(4) Through evaluations using ndnSIM[14] simulations, demon-
strates that CFN is applicable to range of different distributed com-
puting scenarios and network topologies.

To the best of our knowledge CFN is the first system to combine
modern distributed system programming concepts in the applica-
tion layer with ICN in order to provide completely decentralized
in-network computing. While scenarios such as the one describd
above could be implemented by existing TCP/IP overlay distributed
computing with centralized orchestration, the key CFN idea is to
provide the same functionality (from an application developer per-
spective) without requiring all the additional mechanisms such as
DNS, discovery mechanisms, application-layer RPC, and orchestra-
tion protocols. In the following, we describe how CFN leverages
mechanisms of the ICN network layer to 1) reduce complexity and
to 2) provide a tighter integration of the distributed computing and
the network layer.

The rest of this paper is structured as follows. In Section 2 we
explain the overall architecture of CFN. We then present the pro-
gramming model and its relationship to function and data naming
in Section 3. Section 4 describes the various components that make
up the system, followed by our evaluation of CFN in Section 5.
Related work is discussed in Section 6. We conclude with some
discussion and plans for future work in Section 7.

68

Michat Krél, Spyridon Mastorakis, David Oran, and Dirk Kutscher

2 CFN ARCHITECTURE OVERVIEW

This section describes CFN’s key design goals, technical concepts,
fundamental building blocks, and introduces the terminology used
throughout the paper.

2.1 Design Goals
We summarize CFN’s design goals as follows:

e to provide a general-purpose distributed computing framework;
o to flexibly exploit compute platforms in diverse scenarios, includ-
ing edge computing environments;

e to enable multi-tenancy (sharing of resources among multiple,
mutually untrusted application contexts);

e to support dynamic invocation of stateless functions as well as
working with stateful actors;

e to support dynamic resource allocation and continuous adapta-
tion to changing resource availability and load,;

e to provide improved performance and efficient resource utiliza-
tion through joint optimization of computing and networking re-
sources; and

e to leverage the rich ICN network layer facilities, such as routing,
forwarding, cryptographic integrity, and data placement (caching)
for better performance, security, and failure resilience.

2.2 Key Concepts

CEN incorporates concepts from modern application-layer frame-
works, is fully dynamic with respect to function/actor instantiation
and invocation and can offload important functions to the network
layer (for example, forwarding strategies for finding the “best” in-
stance of a function in the network).

It provides abstractions and corresponding APIs for program-
mers so that they can focus on program semantics without having to
consider networking aspects. The system automatically translates
code into distributed method invocations, and executes methods
at the most suitable network location, while taking into account
available resources and the location of both input parameters and
method state.

CFN can handle dynamic stateless and stateful method invoca-
tions. The system supports multi-tenancy, i.e., it can run multiple
concurrent programs from different users over the same infrastruc-
ture, dynamically assigning resources to individual computations.
Isolation among tenants emerges naturally from the hierarchical
ICN naming employed by RICE, which can bind cryptographic
keying material! and resource allocation to names. However, we
only consider well-formed distributed programs whose components
can assume a single security boundary and are internally mutually
trusted.

In CFN, compute nodes that can execute functions within a given
program instance are called workers. The allocation of functions and
actors to workers happens in a distributed fashion. A CFN system
knows the current utilization of available resources and the least
cost paths to copies of needed input data. It can dynamically decide
which worker to use, performing optimizations such as instantiating
functions close to big data inputs. The bindings that control which
execution platforms host which program interfaces (or individual

!For both signature-based integrity and confidentiality, flexible tenant-specific trust
schemas can be established by employing the methods in [30].

Compute First Networking: Distributed Computing meets ICN

functions/actors) is maintained through a computation graph (see
section 4.2).

To realize this distributed scheduling, workers in each resource
pool advertise their available resources. This information is shared
among all workers in the pool. A worker execution environment
can decide, without a centralized scheduler, which set of workers
to prefer to invoke a function or to instantiate an actor. In order to
direct function invocation requests to specific worker nodes, CFN
utilizes the underlying ICN network’s forwarding capabilities — the
network performs late binding through name-based forwarding
and workers can provide forwarding hints to steer the flow of work.

2.3 Building Blocks

CEN employs ICN protocols, Remote Method Invocation in ICN
(RICE), and Compute Graphs realized with Conflict-Free Replicated
Data Types (CRDTs) as building blocks.

2.3.1 Information-Centric Networking.

CFN interacts with the (Information-Centric) network layer di-
rectly and depends on a number of its features. In CFN, programs
consist of functions and actors named via ICN name prefixes. In-
dividual functions are named with RICE-compatible (section 2.3.2)
referentially transparent names under the corresponding prefix. Ac-
tors (& la Ray[18]) are similarly named with RICE-compatible names
under the prefix.

ICN name-based routing is used to direct function invocations
to workers on execution nodes. The names of workers and of pro-
grams are completely independent of each other. It is the task of
the scheduler (section 4.4) to manage the relationship in order to
distribute function execution among the workers. The bindings
that control which workers execute which programs (or individual
functions/actors) is maintained through the computation graph (see
section 4.2).

The selection of the locus of execution when a function is in-
voked is determined by a combination of the information in the
computation graph and native ICN routing, augmented with for-
warding hints.

2.3.2 RICE: Remote Method Invocation in ICN.

ICN systems such as NDN[33] or CCNx[2] provide a more pow-
erful forwarding service than TCP/IP because they employ a more
elaborate per-hop behavior with per-packet soft-state in forwarders.
ICN forwarders can respond in the data-plane to dynamic informa-
tion to make better forwarding decisions, enable local retransmis-
sion, and allow in-network congestion control schemes. Therefore,
ICN’s fundamental service model of accessing named data through
its INTEREST/DATA primitives provides an attractive basis for re-
mote function invocation, as demonstrated by, for example, Named
Function Networking[29] or NFaaS [11].

RICE[10] is a remote method invocation framework for ICN
providing additional mechanisms for client authentication, autho-
rization and ICN-idiomatic parameter passing. RICE implements a
secure 4-way handshake in order to achieve shared secret deriva-
tion, consumer authentication and parameter passing.

Furthermore, RICE enables long-running computations through
the concept of thunks[1] from the programming language litera-
ture. This decouples method invocation from the return of results -

69

ICN ’19, September24-26, 2019, Macao, China

thunks name function results for retrieval purposes. In CFN, we use
RICE machinery extensively for implementing all of the function
invocation primitives and for result fetching.

2.3.3 Conflict-Free Replicated Data Types.

Conflict-free Replicated Data Types[26] (CRDTs) are data struc-
tures that can be replicated across multiple computers in a network
while allowing independent, coordination-free update. CRDTs pro-
vide clean eventual consistency guarantees (i.e., if no new updates
are made to a given data item, eventually all accesses to that item
will return the last updated value). These properties make CRDTs
valuable in applications such as collaborative document editing
[13, 16] where updates come from multiple parties.

In CFN, we use CRDTs to implement the shared computation
graph (section 4.2).

2.4 Terminology
We adopt the following terminology:

Program - a set of computations requested by a user. A program
can be treated as a single sequential code thread calling multiple
functions on multiple remote nodes.

Program Instance - one currently executing instance of a pro-
gram

Function - a specific computation that can be invoked as part of a
program. When assigned by the scheduler, a function of a particular
program instance is instantiated and executed by one worker in
the network.

Data - represents function outputs and inputs. Furthermore, actors
make their internal state visible as a data object.

Future - futures are objects representing the results of a compu-
tation that may not yet be computed. In CEN a future is just the
name of the data to be produced (section 3.2).

Worker - the execution locus of a function or actor of a program
instance

CFN node - a node with the ability to host workers. Each CFN
node can act as both worker and scheduler. Workers can join one
or more program instances. Joining a program instance subscribes
a worker to the computation graph associated with the program
name prefix and allows other workers in this program instance to
schedule functions on this worker.

3 PROGRAMMING MODEL AND NAMING

CFN implements a dynamic task graph computation model, i.e., it
represents an executing application as a graph of dependent tasks
that evolves during execution. Within this model, CFN provides
both an actor and a task-parallel programming abstraction.? In the
following, we describe the programming model, our naming scheme
and give an overview of the CFN program execution process.

3.1 Programming Model

Computations in CFN can be directly expressed in a variety of dis-
tributed programming languages. For our prototype, we use Python

2This unification differentiates CFN from related systems like CIEL[19], which only
provides a task-parallel abstraction, and from Orleans [14] or Akka [1], which primarily
provide an actor abstraction.

ICN ’19, September24-26, 2019, Macao, China

code. Developers can turn any regular Python program into a dis-
tributed computation with almost no change to the code. CFN hides
the networking aspects from the programmer and automatically
handles the details of name assignment and the execution of func-
tion calls. We designed a simple API to capture relations between
data and function and re-use already computed results through the
future mechanism (Table 1).

To minimize code changes we use function and class decora-
tors. Developers designate functions as referentially transparent or
referentially opaque through these decorations. CFN defines wrap-
pers around decorated classes and functions to enable additional
processing. On invocation, each decorated function immediately
returns a future to the results instead of the actual data. The future
can be then used either in a subsequent call to retrieve the result or
passed as an input parameter to other functions. CFN will always
return a future even if the result is already available on the worker.
It allows us to keep clean semantics coherent with ICN pull-based
model and presents potential performance benefits. The computed
result might not be required on the caller node, but rather on an-
other worker that receiving the future as an input argument, can
directly fetch the required data. In order to retrieve the computed
data, functions call get(future); this will block until the requested
data has been computed and fetched.>

In CFN, each class is a stateful actor comprising all its methods.
CFN automatically recognizes state modifications and is able to
migrate actors’ state among different workers. The whole process is
transparent for developers. Decorating an actor’s functions does not
require a different approach from that used for stateless functions.
We present a sample CFN code below:

@cfn.actor
class CoughAnalyzer:
#class state

coughs = []
alert = False

@cfn.transparent
def addSample(self, sample_f, features_f):

sample, features = cfn.get(sample_f, features_f)
coughs.append([sample, features])

if diseaseDetected(coughs):

alert = True

@cfn.opaque

def removeSpeech(sample_f):
sample = cfn.get(sample_f)
remove speech from the sample
return anonymized_sample

@cfn.transparent

def extractFeatures(sample_f):
sample = cfn.get(sample_f)
analyze the sample
return features

HHHHFHHHHHAHSE main HEHHHHHFSHAH

analyzer = CoughAnalyzer ()
while True:
sample_f = recordAudio ()

anonymized_sample_f = removeSpeech(sample_f)
features_f = extractFeatures(anonimized_sample_f)
analyzer.addSample (anonymized_sample_f, features_f)

The main function runs on a recording device (i.e., a mobile phone),
collects audio samples and invokes processing functions for speech

3Since functions of a program instance can be executed in parallel, futures also serve
as the synchronization primitive that prevents race conditions.

70

Michat Krél, Spyridon Mastorakis, David Oran, and Dirk Kutscher

removal (removeSpeech()) and feature extraction (extractFeatures()).
Each function is decorated with @cfn decorator, returns a future
referencing results and can be invoked on remote devices. Finally
CoughAnalyzer class collects annotated samples and performs cross-
sample analysis. CFN automatically manages state of the class, in-
vokes functions on the most suitable nodes and performs state/data
migration between workers. As a result, the constrained mobile
phone can run a CPU-expensive application by using resources of
nearby workers without heavy code modifications.

3.2 Naming

In CFN, each node automatically constructs the needed ICN names,
subscribes to the corresponding program prefixes and executes
code as RICE remote method invocations. Figure 1 summarizes our
naming scheme.

Each worker capable of computing CFN programs is assigned
an ICN-routable CFN Node Name prefix to which it appends its
local worker name. This name is used to fetch data produced by
the node or to schedule computations (section 4.4). Furthermore,
we define a Framework Prefix for group communication among
all CFN nodes under a given administrative entity (e.g., /[LA-CFN/).
This is used to disseminate information about new programs and
allows CFN nodes to join computations (section 4.1). Each CFN
program has a unique Program Name representing its code base
(e.g., /EHealth/). When a new program instance is instantiated,
it receives a unique instance identifier.* The Program Instance
Name is formed by prepending the Progam Name with the Frame-
work Prefix and appending an instance identifier. This is used for
communication among nodes running the same program instance
(i.e., /LA-CFN/EHealth/45/). For example, the resource advertise-
ment protocol (section 4.3) uses the framework instance specific
Resource Ads Prefix (i.e., /LA-CFN/resource/) and computation
graph maintenance (section 4.2) uses the program instance specific
Computation Graph Prefix (i.e., /CFN/EHealth/45/graph/) .

Furthermore, we adopt the Function Name scheme used in
RICE[10]. Referentially transparent function names consist of a pro-
gram name, name of the function and a hash of the input parameters
(e.g., /EHealth/extractFeatures/(#)/). This allows us to use already
computed results named by the future. In referentially opaque func-
tion names, the last component is replaced by a unique identifier
generated by the caller (e.g., /EHealth/removeSpeech/123/), which
is needed to prevent incorrect result sharing.

We extend this model to support stateful actors in the form
of classes. Each Class Method Name consists of program name,
class name, and function name followed by an input hash or unique
identifier (e.g., /EHealth/CoughAnalyzer/addSample/(#)/). Finally,
actors’ state uses class name, 'state’ keyword and a state object hash
(i.e., /EHealth/CoughAnalyzer/state/#/). Such an approach allows
for efficient state storage if the state was not modified by function
invocations.

Data produced by functions share the name of the function in-
vocation. Furthermore, function names do not include the program
instance-specific prefix; this allows sharing already computed re-
sults among multiple program instances.

4If the environment is capable of fetching and installing code dynamically, workers
can use the program name to fetch the components required to run the program.

/LA-CFN/
/EHealth/
/LA-CFN/EHealth/45/
/LA-CFN/resource/
/CFN/EHealth/45/graph/
/EHealth/extractFeatures/(#)/
/EHealth/removeSpeech/123/
/EHealth/CoughAnalyzer/addSample/(#)/
/EHealth/CoughAnalyzer/state/#/

Compute First Networking: Distributed Computing meets ICN

ICN ’19, September24-26, 2019, Macao, China

Table 1: CFN APL

‘ Name Description

@CFN.transparent / @CFN.opaque

This method return immediately.

Decorator for a referentially transparent or opaque stateless function. Each function invocation is automatically
scheduled for remote invocation. Functions can take objects or futures as inputs and return one or more futures.

object=CFN.get(futures)

Return the values associated with one or more futures. This method will return when the result is computed by a
remote function or otehrwise block.

@CFN.actor

Class decorator for stateful actors. Instantiate the decorated class as a remote actor, and return a handle to it. Call a
method on the remote actor and return one or more futures. Both are non-blocking

NodeName: /netl/nodel/

Framework prefix: /LA-CFN/

Program Instance: /LA-CFN/EHealth/45/
Computation Graph: /LA-CFN/EHealth/45/graph/
Resource Advertisement: /LA-CFN/resource/

Transparent function: /EHealth/extractFeatures/(#)/
Opaque function: /EHealth/anonimizeAudio/123/

j

3.3 Program execution overview

Class method: /EHealth/CoughAnalyzer/f1/(#)/
Class state: /EHealth/CoughAnalyzer/state/#/

Figure 1: CFN naming scheme.

Given this programming model and our naming scheme, we proceed
with an overview of our system behaviour using the example shown
in Figure 2. Our sample program® (and its main function) gets
instantiated on NodeA that proceeds to create a program instance
prefix and invoke the main function locally. This initial worker
implicitly specifies which workers are eligible to participate in the
program instance by deciding in which resource pool to execute the
program instance (section 4.1). Nodes running the same program
instance maintain its distributed computation graph (section 4.2).

When the code reaches a remote function invocation removeSpeech(),

the call is sent to the local task scheduler (step 1). The scheduler
immediately returns a future representing the result to be pro-
duced (step 2) and the caller code can continue its execution. In the
meantime, the scheduler (section 4.4) takes into account available
resources (e.g., CPU, memory) on other workers in the program
instance’s resource pool and assigns removeSpeech() to NodeB by
putting a forwarding hint in the computation request (step 3). When
receiving the computation request, NodeB updates the computa-
tion graph which gets synced with the other workers. The whole
process repeats when extractFeatures() is called (step 4-5). However,
this time, the scheduler also takes into account the placement of the
function input parameters (retrieved from the computation graph)
when deciding to send the request to NodeC (step 6). NodeC starts
executing extractFeatures() immediately and fetches all the required
input parameters in the background (step 8) by sending an Interest
towards NodeB (step 9). The computation blocks only when the
function requests its input parameters by calling get and they have
not yet been fetched. Once the input is fetched, NodeC can resume
executing extractFeatures() and returns the final result.

4 SYSTEM COMPONENTS
We provide a detailed description of the CFN components.

SWe omit the program prefix for better readability.

71

4.1 Program Membership Management

Each program starts on a worker that receives the initial request
and is responsible for running the main function. The initial worker
creates and advertises a program instance prefix and a prefix for
maintaining the computation graph (section 4.2). If the worker
decides not to handle the program computation by itself, it can
schedule functions on additional workers that currently are not
part of the program instance, but advertise available resources
(section 4.3). Upon receipt of a scheduled request, a CFN node
can decide to join the computation by subscribing to the program
instance prefix.

A worker thereby receives computation graph updates, can ac-
cept computations assigned by other nodes and can request exe-
cution of program functions on other nodes executing the same
program instance (section 4.4). Each worker can be executing por-
tions of as many programs as its resources permit. If the current
number of workers is insufficient to meet the performance met-
rics of the program, any CFN node participating in the program
instance’s execution can try to involve additional nodes using the
same mechanism. Overall resource management is the responsibil-
ity of the task scheduler (section 4.4) which can perform scale up or
scale down to respond to changes in demand for a given program,
tenant, or globally for the CFN framework instance as a whole.

4.2 Computation Graph

In CFN, workers maintain the computation graph for each program
instance being executed. Each graph is maintained only by workers
participating in the execution of a given program instance. The
graph captures the information needed to track invoked functions
and produced data (Figure 3). There are 3 types of graph nodes®:

Stateless Function - represents a stateless function invocation
for either a referentially transparent or referentially opaque com-
putation. A stateless function graph node contains a function name,
a list of input names, a list of produced data and the name of the
parent function that called it.

Actor Function - represents a stateful function invocation for ei-
ther a referentially transparent or referentially opaque computation.
As with functions, an actor graph node contains a function name,
a list of input names, a list of produced data and the name of the
parent function it was called by. Actor graph nodes also include
names of objects representing an input state (before the method
was invoked) and an output state (after the method was invoked).
Data - represents either data produced by function or state objects
capturing the persistent state of the function. A data graph node

®For simplicity and to limit the number of independent objects needed to maintain the
graph, graph arcs are represented by the parent function element of each graph node.

ICN ’19, September24-26, 2019, Macao, China

3)schedule anonimizeAudio on NodeB

Michat Krél, Spyridon Mastorakis, David Oran, and Dirk Kutscher

OanonimizeAudio(

1) execute /anonimizeAudio/123

anonimizeAudio(sample_f)
2) future

4) execute /extractFeatures/(#

O main()

7)update graph

Task Scheduler

NodeB
NodeA(main/| 1% 3
ode anonimizeAudiof123 ! 9) request
extractFeatures input

8)get extractFeatures,
input thunk OextractFeatures()

extractFeatures (a_sample_f) <—_——__—_>
5) future

Task Scheduler

NodeA

Shared Computation Graph
Task Scheduler

NodeC

6)schedule extractFeatures on NodeC

Figure 2: CFN Overview.

input hash
& unique id

referentially () referentially
»> opaque — > transparent

Analyze 1-PPENCL

Analyzer)apend/(#)]
L))

L}

y |
‘main/()}—{Analyzer/init/() :anonymizeAudio/& (extractFeatures/(#))

Figure 3: Computation graph created from sample Python code.

contains a data name, a name of the function it was produced by, and
a size representing the resources required to store the corresponding
data object. The size is an estimate while the data is still being
produced and is updated to the actual value when the producing
function finishes. Data nodes may represent Actor state objects.

Furthermore, each graph node type contains a list of thunks. At
first, the thunk list contains the name of a worker that invoked the
function or produced data described in the graph node. However,
the list can be extended if multiple workers invoke the same refer-
entially transparent function (e.g., due to network partitioning) or
if data gets replicated.

Each graph node is uniquely identified by its name as described
in Section 3.2. Graph nodes for referentially opaque computations
receive a unique name component value from their callers, while
multiple referentially transparent function instances sharing one
name (and thus input parameters) can be merged into a single
graph node as below. Data names are derived from the function
that produced them and inherit their features.

When an actor function is invoked, it takes a state object as input
(except actor creation function) and after execution creates a new
state object.

The old state object is kept on the invoking worker.” Such an
approach allows us to unify the handling of stateful and stateless
computations, and by considering state objects to be input/out-
put parameters, migrate any type of computation among worker
nodes. This also simplifies the design of the scheduler described in
section 4.4.

The computation graph must be kept up to date among the work-
ers involved in executing a program instance. However, in contrast
to a centralized scheduler, in a distributed environment updates
can be lost, duplicated or reordered so that maintaining a shared,
synchronized data structure is difficult. When a function is invoked
or data is produced, the responsible worker creates a corresponding

7Older states may be used by a debugger - this can be very useful when debugging
a distributed program as it captures an important part of the state evolution of the
program.

72

graph node. Each node keeps information about related objects in
their input and /output/called_by field; this enables graph recon-
struction entirely from updates and allows participating workers
to explicitly request missing information.

Such an approach translates maintaining the graph into main-
taining a set of updates. To represent the graph as a CRDT, we
implement an efficient merge operation among graph nodes with
the same name, but different content. Our naming scheme (sec-
tion 3.2) confines merging to cases where the same referentially
transparent function gets invoked by different workers or data
is replicated among workers. The graph nodes can differ if data
has been migrated among computation nodes as the computation
evolves. In such cases, the merge simply updates the computation
node list in the graph node.?

For simplicity and interoperability, our CEN prototype represents
graph updates in JSON. Updates can be distributed through NDN
synchronization protocols, such as Psync [34], which provide the
necessary primitives to achieve the eventual consistency semantics
of CRDTs. For our current prototype (section 5), we have imple-
mented a simplified synchronization scheme through a multi-cast
namespace among CFN nodes.

4.3 Resource Pool Management

Each administrative domain of a CFN network can be divided into
several resource pools, partitioned by tenant. Each CFN node may
be assigned to one or multiple resource pools of one or more ten-
ants.? By subscribing to a resource pool, a worker can accept com-
putations assigned by other nodes and can request assignment of
program functions to other nodes executing the same program (sec-
tion 4.4). This reduces the amount of information handled by each
worker and exploits the available parallelism to reduce completion
times. We investigate the impact of resource pool size in section 5.

For resource advertisements, we implement a scoped flooding
protocol. An instance the resource advertisement protocol runs
among members of each resource pool. This straightforward ICN
implementation approach provides reasonably low convergence
delay but no optimality guarantees for resource placement.

Note that it is up to the local resource manager on each node
to decide whether resources get shared or partitioned among their
local resource pools, and whether to do optimistic or pessimistic

8In CFN, once downloaded and advertised, data cannot be removed until the pro-
gram ends. Supporting deletion would require a more complex computation graph
representation and complicate the CRDT design.

Tenants can be isolated from each other and their resource pools structured hierar-
chically by exploiting native ICN naming capabilities.

Compute First Networking: Distributed Computing meets ICN

advertisements. If they are shared among tenants, again it is a local
decision on how to manage the isolation to minimize/eliminate
inter-tenant competition for resources.

Every time interval ¢ each worker in a pool advertises its re-
sources in terms of available CPU and the number of tasks in its
task queue. This information is then used by the task scheduler
when assigning functions to specific workers (Section 4.4).

4.4 Task scheduler

A major component of our CFN system is a task scheduler. In
any system with a large number of tasks, the scheduler must be
extremely efficient and have a sufficiently global and up-to-date
view of the system state to perform load distribution considering
both performance and failure resilience. Centralized schedulers can
become a bottleneck of the whole system[18]. Therefore, we instead
chose to develop a decentralized scheduler that shares the load
of scheduling tasks among all the workers participating in each
program instance. Our scheduler design achieves the following
desirable characteristics:

e Functions are invoked close to the data they rely on. We apply
the same criteria for stateless functions and Actors by treating the
encapsulated state of an Actor the same as an input parameter. The
scheduler’s optimization function tries to keep stateful computation
local to one physical node.

e Each graph node has an assigned thunk name by which data or
functions can be accessed/invoked. If the thunk is accessed before
the data is available, the requestor is informed via an error return
to try again later.

e By keeping track of thunks, the scheduler can ascertain if some-
one makes a call to already existing stateful instance, and hence
know where to inform the caller to send it.

Function requests originate on the worker hosting the calling
(i.e., parent) function. This worker uses information from the com-
putation graph and the available resources in the resource pool
executing the program instance to choose the most suitable worker
to run each function.!® Once the choice has been made, the schedul-
ing worker invokes the function through RICE, using the function
name as the Interest Name. The chosen worker is selected by placing
its worker name in a forwarding hint for the RICE Interest, which
allows any ICN node (not just CFN nodes) to forward the interest
toward the correct worker. Once the scheduled worker starts func-
tion execution, it puts the thunk for its result into the computation
graph so callers can fetch it or pass it to other functions.

When processing a request, the scheduler follows the following
algorithm:

(1) Extract the names of function inputs from the requests.

(2) Query the computation graph for the size of each input.

(3) Retrieve any missing parts of the graph if necessary.

(4) Select the input of the largest size.

(5) Query the computation graph for the thunk of the closest node!!
having the largest portion of input data.

(6) Check with the resource advertisement protocol if the selected
node is not overloaded (this is only possible when being within the
range of the target node).

10 A worker assigning a function can of course choose itself.
11Based on the ICN forwarder’s metrics.

73

ICN ’19, September24-26, 2019, Macao, China

(7) If the target node has enough resources, send out the Interest
to invoke the function.

(8) If the target node is overwhelmed, send the packet towards
the closest node with enough resources within the same program
instance.

(9) If all neighbour nodes involved in the program instance are
overwhelmed, schedule the function on any node within the same
resource pool with available resources.

This algorithm is a good match for the underlying RICE and
ICN protocol substrate. However, we do not make any claims con-
cerning its optimality as a scheduler algorithm per se. Its dynamic
performance depends on a number of factors, including the over-
head versus responsiveness tradeoffs of the resource advertisement
protocol and the convergence delay of the CRDTs representing the
computation graph.

4.5 Exceptions and Failure Recovery

Any distributed computing framework has to deal with failures, for
example, unavailable nodes due to crashes or network partitions. Be-
cause CFN is leveraging ICN it can directly benefit from ICN’s fault
tolerance and problem mitigation mechanisms for network failures
(link failures, congested paths etc.) such as location-independence
(enabling late-binding of Interest names to producers through for-
warding), ICN routing, and local repair through caching.

In addition, CFN can tolerate node failure and corresponding
loss of computation results. There are two alternative strategies
(we compare their efficiency in Section 5):

(1) Upon failure detection, CFN can proactively recompute every-
thing that has been lost (i.e., CFN can directly invoke the corre-
sponding function again.).

(2) CFN can also defer re-computation until another function actu-
ally needs the results (reactive approach).

5 EVALUATION

We have implemented a prototype of CFN'? in ndnSIM [15]. We
evaluated this prototype in a variety of network topologies, in-
cluding line, tree, and mesh topologies, as well as a rocketfuel
topology [27] of 175 nodes. For the line, tree, and mesh topologies,
we experiment with a variable number of CFN nodes. For the rock-
etfuel topology, we randomly select 50 CFN nodes to evaluate our
prototype in non-deterministic conditions, where CFN nodes are
connected through different number of hops and network delays.
While several cloud-based datasets are available for public use,
they usually do not contain any information about input/output
data sizes or their initial placement. For our experiments, we there-
fore use a set of synthetic task traces generated in Python con-
taining 1000 functions. Each program is initiated in the main func-
tion spawning from 1 to 8 processes. Each new process randomly
calls from 0 to 8 new functions until reaching 1000 functions. We
consider traces containing 1000 functions large enough for an initial
investigation of the tradeoffs of our CEN prototype, while we plan
to evaluate CFN in the context of larger traces in the future. Each
function in a trace has a variable number of inputs, sizes of pro-
duced data and input/output dependencies, as we aim to understand

2https://github.com/spirosmastorakis/CEN

ICN ’19, September24-26, 2019, Macao, China

the specifics of the CFN design while varying these parameters. For
each experiment, we did ten simulation runs and we report on the
90th percentile of the results.

5.1 Small topologies

We start our evaluation by investigating the scalability of our ap-
proach for three different topology types (line, mesh and tree). We
submit a 1000-function program with no input parameters, and
compare the completion time against an optimal case, without com-
munication delay between nodes (Figure 4). CFN imposes only
minimum performance penalty resulting from the delay of the links
between the scheduling nodes and the assigned workers. Comple-
tion time is reduced with every added worker.

We continue by evaluating the mechanisms used for scheduling
tasks. Figure 5 presents the completion time of a 1000-function
program while taking into account data placement and resources
(locality) and when relying uniquely on available resources (no-
locality). When a topology is small, the data locality mechanism
does not play an important role. However, with increasing distances
between workers, pulling large input parameters may heavily delay
the program completion time. This effect is more visible in less con-
nected line and tree topologies, causing 88% and 48% performance
decrease respectively with 30 nodes.

Furthermore, we evaluate the same mechanisms with different
average size of data parameters (Figure 6). As expected, increasing
the size of input parameters increases the completion time for all
the cases, since functions may wait longer to fetch the required
data. However, sending requests toward the large input parameters
allows us to decrease the running time by 50% in the line topology
and by 40% in the tree topology of 30 nodes. Both tests below show
how important it is to take into account data placement in an edge
environment when moving data causes significant delays.

We repeat the test by keeping a fixed average size of input pa-
rameters, but increasing their number (Figure 7). Surprisingly, more
inputs does not necessarily increase the program completion time.
Functions can fetch input parameters in parallel, and the total
download time is determined by the furthest and largest of them.
Increasing the average number of input parameters increases the
chance for downloading large objects located far away. This effect
is clearly visible in the tree and line topologies, while it has little
impact on well-connected nodes in the mesh topology. The results
suggest that placing functions at the center of gravity of all its
inputs can significantly decrease the completion time.

Figure 8 presents the impact of node failures!® on the program
completion time. We randomly stop the specified percentage of
nodes between 50s and 100s of each simulation. We investigate the
proactive and reactive recovery strategies presented in Section 4.5.
For all the investigated topologies, the proactive strategy results in
increased completion time. As observed previously, the line topol-
ogy results in the highest performance decrease due to longer paths
between nodes.

We then follow by investigating the total number of tasks com-
puted in each scenario (Figure 9). As expected, the reactive strategy

13We assume that the CFN instance of a topology node has failed, however, the
ICN forwarder installed on this topology node is still functional, maintaining the
connectivity of the overall topology.

74

Michat Krél, Spyridon Mastorakis, David Oran, and Dirk Kutscher

reduces the total load by recomputing only tasks that are necessary
to complete the program.

5.2 Rocketfuel topology

We test the scalability of our framework by running a 1000-function
program choosing different nodes as initial workers in the AS6461
rocketfuel topology (Figure 10). We observe minor (<7%) differences
between central and peripheral nodes. The CFN distributed design
schedules functions using multiple workers allowing it to work
efficiently regardless of the initial worker’s location.

Figure 11 presents the impact of data size and the number of input
parameters on program completion time. The tests confirm our
previous results for smaller topologies (Figure 7). The completion
time is mainly influenced by the size and location of the input
parameters (especially of the largest and furthest ones) rather than
their number.

Finally, we reinvestigate the impact of node failures and perfor-
mance of our two recovery strategies (Section 4.5). In the previous
setup (Figure 8) we concluded that the reactive strategy performed
better for all the topologies. However, this time we run 3 different
programs with increasing number of input/output dependencies
between functions. For low number of dependencies (program1),
the reactive strategy still performs better, but for high number of de-
pendencies (program3) the proactive strategy results in a decreased
completion time. Analyzing and predicting the degree of interac-
tion among functions could help to choose the optimal recovery
strategy and decrease the overall completion time.

5.3 Discussion

Our evaluation suggests that CFN is able to efficiently distribute
sequential programs among multiple workers, significantly speed-
ing up its execution. Utilizing ICN protocols for these tasks brings
several important benefits. Our framework automatically assigns
names to program files (i.e., source code/binaries) as well as func-
tion results. We can then easily migrate functions and data among
nodes without using costly, DNS-like discovery (objects can be
obtained from the closest node in the network).

CFN uses RICE as its external tool. It allows to map all interac-
tions to one RMI interaction type providing a simple, yet powerful
interface. RICE was evaluated in its respective paper [10] and a
more detailed evaluation is out of the scope of this work.

As currently designed, CFN requires all worker nodes to process
all computation graph updates for the program instances they run
(which arrive as JSON messages). This overhead increases linearly
with the number of functions/data produced. Dividing a program
into smaller functions enable fine-grained load balancing, but incurs
increased overhead.

Furthermore, when routing requests, computation nodes choose
a worker with the largest input parameters. In CEN, since all the de-
pendencies are explicitly listed in the request, they can be efficiently
extracted from the computation graph (i.e., using a hash map with
O(1) access time), and comparing sizes of input parameters involves
only simple arithmetic operations. Finally, each node collects infor-
mation about resources available on neighbouring nodes. However,
usage of scope flooding guarantees fixed overhead of this process
regardless of the total number of nodes in the resource pool.

Compute First Networking: Distributed Computing meets ICN

ICN ’19, September24-26, 2019, Macao, China

O Treenolocaliy -0~ Meshno locality 4~ Line-ocality -O- Tree-nolocality ~-O- Mesh-no locality ~ -#- Line-locality
-*-- Ideal - Line -O- Tree --A- Mesh -0- Line-no locality -7~ Tree-locality Mesh-locality “0- linewnolocality - Treerlacality Mesh-locality
1300 16001 & 620 900
1450{ 520 \E\E‘E_—E 800
;1150 Sl 5o 2
21000 g 300 320 % § © 700
> = 1150 &1 9]
o o 220 600
E 850 £ 1000 2 E
= 700 = 850 10 15 20 25 30 5500
o S o
@ 550 3 700 @400
£ 400 g 550 £ 300 =
38 8 400 T 719 200
250 250
100
100 = 100
0 5 10 15 20 25 30 0 5 10 15 20 25 30 5 10 15 20
Number of Nodes Number of Nodes Size of Input (MB)
Figure 4: CFN scalability. Figure 5: Impact of data locality mechanisms for dif- Figure 6: Impact of data locality mechanisms for dif-
ferent number of workers. ferent data sizes.
-O- Tree-Proactive =~ -O- Mesh-Proactive -++- Line-Reactive W4 Proactive-Tree ~ HEE Proactive-Mesh HEE Reactive-Line
0 -O- Tree Topology -[}- Line Topology -O- Mesh Topology -}~ Line-Proactive -7v- Tree-Reactive <>~ Mesh-Reactive v/ Proactive-Line St Reactive-Tree B Reactive-Mesh
45 450
120
400 400
3 g "
&350 8350 115
o o —~
£ 300 £ 300 S
5 S SR D SR - 9
s X 110
o 2 [
5250 T T o T 5250 B
E 200 g 200
S S 105
150 150
100 100 100 : : A -
0 3 6 9 12 15 0 5 10 15 20 5% 10% 15% 20%
Number of Inputs Node Failure Probability (%) Node Failure Probability (%)

Figure 7: Impact of the number of function inputs on Figure 8: Impact of node failures on the completion
the completion time. time.

Figure 9: Impact of node failures on the number of
executed tasks.

-O- Input Size=5MB -O- Input Size=15MB -O- Program 1-Proactive -O- Program 3-Proactive -#~- Program 2-Reactive
-}~ Input Size=10MB -7x- Input Size=20MB -}~ Program 2-Proactive -/x- Program 1-Reactive -{>- Program 3-Reactive
350 450
T300 5 400
2 T 1 k)
qE) qE, 350
=250 £
d '; '; 300
S + S
© 200 B 250
Q Q
3 £ 200
“ 150 ©
150
100 100
0 10 20 30 40 50 0 5 1 15 20
Number of Inputs Node Failure Probability (%)
Figure 10: Impact of initial worker placement. Figure 11: Impact of input number and size on perfor- Figure 12: Impact of node failure on the overall per-
mance. formance.

Utilizing ICN protocols can significantly reduce the bandwidth 6 RELATED WORK

required to propagate computation graph updates. This overhead
could be further decreased using more space-efficient techniques

In the following, we explain how CFN relates to prior and related
work on in-network and edge computing, distributed computing

such as Protocol Buffers!4. Additionally, we observe that not all frameworks. and ICN.

the workers in the resource pool need to be notified about every In-network and edge computing In-network computing has
update. Ho.wever, those Patterns are difficult to formalize due to mainly been perceived in four variants so far: 1) Active Network-
the dynamic and unpredictable nature of each program. It may be ing [28], adapting the per-hop-behavior of network elements with

feasible to apply program-specific machine learning techniques to
further divide resource pools into more specialized clusters and
drastically reduce the overhead of our approach.

respect to packets in flows, 2) Edge Computing as an extension of
virtual-machine (VM) based platform-as-a-service, 3) programming
the data plane of SDN switches (through powerful programmable

CPUs and programming abstractions, such as P4 [25]), and 4)

4https://developers.google.com/protocol-buffers

75

application-layer data processing frameworks.

https://developers.google.com/protocol-buffers

ICN ’19, September24-26, 2019, Macao, China

Active Networking has not found much deployment due to its
problematic security properties and complexity. Programmable data
planes can be used in data centers with uniform infrastructure, good
control over the infrastructure, and the feasibility of centralized
control over function placement and scheduling. Due to the still
limited, packet-based programmability model, most applications
today are point solutions that can demonstrate benefits for partic-
ular optimizations, however often without addressing transport
protocol services or data security that would be required for most
applications running in shared infrastructure today.

Edge Computing (as traditional cloud computing) has a fairly
coarse-grained (VM-based) computation-model and is hence typi-
cally deploying centralized positioning/scheduling though virtual
infrastructure management (VIM) systems.

Distributed computation frameworks Application-layer data
processing such as Apache Flink [8] provide attractive dataflow
programming models for event-based stream processing and light-
weight fault-tolerance mechanisms — however systems such as Flink
are not designed for dynamic scheduling of compute functions.

Modern distributed applications frameworks such as Ray [18],
Sparrow [22] or Canary [23] are more flexible in this regard — but
since they are conceived as application-layer frameworks, their
scheduling logic can only operate with coarse-grained cost infor-
mation. For example, application-layer frameworks in general can
only infer network performance, anomalies, and optimization po-
tential indirectly through observed performance or failure, so most
scheduling decisions are based on aggregate metrics such as plat-
form load.

Centralized schedulers such as Dryad [7], Ciel [19] or Spark [31]
can implement a optimal task placement taking into account data
location. However, the centralized design incurs increased schedul-
ing latency and exhibits scalability problems when the number of
tasks increases beyond the capacity of a single CPU to schedule.

In data centers where resource pools are rich and failure do-
mains large, a number of distributed shared memory approaches to
distributed computing have been notably successful. These include,
among others, Memcached [5] and RAMCloud [21]. Such systems
however do not generalize to heterogeneous or edge computing
environments, which makes them not a direct alternative to CFN.

Information-Centric Networking We explained how CFN
leverages ICN and RICE in section 2. Named Function Network-
ing [29] is the seminal proposal for combining ICN’s access to
named data with dynamic computation invocation over ICN. Whereas
in NFN, the compute-graph is known in advance (as a nested set of
expressions that get evaluated, leading to invocations of function in-
stances in an NFN network), CFN is more dynamic, as the program
execution can lead to arbitrary instantiation of new actors that
can in turn invoke additional functions, instantiate new actors etc.
CFN can thus be characterized as a distributed application platform,
whereas NFN is intended for deterministically evaluating function
expressions.

NFaaS [11] allows efficient, opportunistic task scheduling, but
takes into account only available resources (i.e., CPU) ignoring
data placement. Furthermore, the framework focuses on stateless
computations and does not provide explicit support for stateful
actors.

76

Michat Krél, Spyridon Mastorakis, David Oran, and Dirk Kutscher

7 CONCLUSION

In-network computing is an important and consequently popular
research topic with a fairly wide design space. Assessing the state-
of-the-art with a systems perspective has led us to the design of
CFN- a distributed computing framework with a fresh approach to
decentralized resource allocation, employing the concept of joint
optimization of computing and network resources.

We have demonstrated that there is a sweet spot in the design
space in combining 1) feature-complete distributed programming
with support for stateless and stateful computations (as provided
by Ray [18] and other frameworks) with 2) a rigorous computation
graph approach for representing distributed computations, directly
supported and tightly integrated with a suitable ICN network layer,
and 3) a distributed, replicated representation of the computation
graph using CRDTs, also directly supported by the ICN network
layer.

This allows CFN to overcome the inefficiencies of state-of-the-art
overlay-based approaches and to provide better availability and
reaction to failures as we demonstrated in our evaluation. These fea-
tures are enabled by leveraging the ICN network layer and the RICE
framework for performing functions such as request forwarding,
caching, and load management without the need for additional over-
lay mechanisms. We believe that the potential of systems like CFN
is huge. They could enable the development of general-purpose dis-
tributed computing platforms that are applicable to a wide range of
scenarios, from (mobile) edge computing, to distributed computing
and network programmability in data centers.

This paper demonstrates the qualitative benefits (reduction of
complexity without losing functionality). We have discovered addi-
tional opportunities to enhance CFN with respect to performance
and resource utilization under different conditions: Our future plans
include extending CFN’s integration with the network layer by del-
egating more of the binding of functions to execution loci to the
network. Currently CFN employs an explicit binding created by
an offloading worker and explicit source routing through ICN for-
warding hints. We envision employing the ICN routing system by
enabling workers to advertize functions they can execute as name-
prefix routes. The routing metrics would be adjusted by the CFN
resource management that takes load information (from the named
execution platforms), decides how to instantiate the graph, and tells
the platforms what metric they should use in their advertisements.
Furthermore, we plan to improve function placement in regard the
their input parameters and automatic selection of failure recovery
strategy. Finally, we plan to further investigate real-world applica-
tions, deploy a pilot system and perform an extensive comparison
with TCP/IP based application.

8 ACKNOWLEDGMENTS

The authors are grateful to the ACM ICN’19 anonymous reviewers
and our shepherd John Wroclawski for their constructive com-
ments and suggestions. This work was supported by the Fonds
de la Recherche Scientifique - FNRS under Grant #F452819F, EC
H2020 ICN2020 project under grant agreement number 723014, EP-
SRC INSP Early Career Fellowship under grant agreement number
EP/M003787/1 and H2020 DECODE project under grant agreement
number 553066.

Compute First Networking: Distributed Computing meets ICN ICN ’19, September24-26, 2019, Macao, China

REFERENCES

[27] Neil Spring, Ratul Mahajan, and David Wetherall. 2002. Measuring ISP topologies

(1]
(2]
(3]

(4]

(9]
[10]

[11

[13]

[14

[15

[16]

[17

(18]

[19

[20]
[21]

[22]

[23]

[n. d.]. Thunk. https://en.wikipedia.org/wiki/Thunk.

2018. Project CCNx. http://www.ccnx.org/.

Samantha J Barry, Adrie D Dane, Alyn H Morice, and Anthony D Walmsley. 2006.
The automatic recognition and counting of cough. Cough 2, 1 (2006), 8.

GHR Botha, G Theron, RM Warren, M Klopper, K Dheda, PD Van Helden, and
TR Niesler. 2018. Detection of tuberculosis by automatic cough sound analysis.
Physiological measurement 39, 4 (2018), 045005.

Brad Fitzpatrick. 2004. Distributed Caching with Memcached. Linux J. 2004, 124
(Aug. 2004), 5-. http://dl.acm.org/citation.cfm?id=1012889.1012894

Dennis Grewe, Marco Wagner, Mayutan Arumaithurai, Ioannis Psaras, and Dirk
Kutscher. 2017. Information-Centric Mobile Edge Computing for Connected
Vehicle Environments: Challenges and Research Directions. In Proceedings of the
Workshop on Mobile Edge Communications (MECOMM ’17). ACM, New York, NY,
USA, 7-12. https://doi.org/10.1145/3098208.3098210

Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.
Dryad: distributed data-parallel programs from sequential building blocks. In
ACM SIGOPS operating systems review, Vol. 41. ACM, 59-72.

A. Katsifodimos and S. Schelter. 2016. Apache Flink: Stream Analytics at Scale.
In 2016 IEEE International Conference on Cloud Engineering Workshop (ICZEW).
193-193. https://doi.org/10.1109/IC2EW.2016.56

J Korpas, J Sadlonova, and M Vrabec. 1996. Analysis of the cough sound: an
overview. Pulmonary pharmacology 9, 5-6 (1996), 261-268.

Michat Krél, Karim Habak, David Oran, Dirk Kutscher, and Ioannis Psaras. 2018.
RICE: Remote Method Invocation in ICN. In Proceedings of the 5th ACM Conference
on Information-Centric Networking. ACM.

Michat Krél and Ioannis Psaras. 2017. NFaaS: named function as a service. In
Proceedings of the 4th ACM Conference on Information-Centric Networking. ACM,
134-144.

Eric C Larson, TienJui Lee, Sean Liu, Margaret Rosenfeld, and Shwetak N Patel.
2011. Accurate and privacy preserving cough sensing using a low-cost micro-
phone. In Proceedings of the 13th international conference on Ubiquitous computing.
ACM, 375-384.

Xiao Lv, Fazhi He, Weiwei Cai, and Yuan Cheng. 2017. A string-wise CRDT
algorithm for smart and large-scale collaborative editing systems. Advanced
Engineering Informatics 33 (2017), 397-409.

Spyridon Mastorakis, Alexander Afanasyev, Ilya Moiseenko, and Lixia Zhang.
2015. ndnSIM 2.0: A new version of the NDN simulator for NS-3. NDN, Technical
Report NDN-0028 (2015).

Spyridon Mastorakis, Alexander Afanasyev, and Lixia Zhang. 2017. On the
evolution of ndnSIM: An open-source simulator for NDN experimentation. ACM
SIGCOMM Computer Communication Review 47, 3 (2017), 19-33.

Ahmed-Nacer Mehdi, Pascal Urso, Valter Balegas, and Nuno Perguica. 2014. Merg-
ing OT and CRDT algorithms. In Proceedings of the First Workshop on Principles
and Practice of Eventual Consistency. ACM, 9.

Chris Meiklejohn. 2016. Lasp. Applicative 2016 on - Applicative 2016 (2016).
https://doi.org/10.1145/2959689.2960077

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I. Jordan,
and Jon Stoica. 2018. Ray: A Distributed Framework for Emerging AI Applications.
In Proceedings of the 12th USENIX Conference on Operating Systems Design and
Implementation (OSDI'18). USENIX Association, Berkeley, CA, USA, 561-577.
http://dl.acm.org/citation.cfm?id=3291168.3291210

Derek G Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith, Anil
Madhavapeddy, and Steven Hand. 2011. CIEL: a universal execution engine
for distributed data-flow computing. In Proc. 8th ACM/USENIX Symposium on
Networked Systems Design and Implementation. 113-126.

World Health Organization et al. 2017. The top 10 causes of death. January 2017.
John Ousterhout, Guru Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric
Stratmann, Ryan Stutsman, Parag Agrawal, David Erickson, Christos Kozyrakis,
Jacob Leverich, and et al. 2011. The case for RAMCloud. Commun. ACM 54, 7
(Jul 2011), 121. https://doi.org/10.1145/1965724.1965751

Kay Ousterhout, Patrick Wendell, Matei Zaharia, and Ion Stoica. 2013. Sparrow:
distributed, low latency scheduling. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles. ACM, 69-84.

Hang Qu, Omid Mashayekhi, David Terei, and Philip Levis. 2016. Canary: A
scheduling architecture for high performance cloud computing. arXiv preprint
arXiv:1602.01412 (2016).

Elliot Saba. 2018. Techniques for Cough Sound Analysis. Ph.D. Dissertation.
Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos
Kalnis. 2017. In-Network Computation is a Dumb Idea Whose Time Has Come.
In Proceedings of the 16th ACM Workshop on Hot Topics in Networks (HotNets-XVI).
ACM, New York, NY, USA, 150-156. https://doi.org/10.1145/3152434.3152461
Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. 2011.
Conflict-free replicated data types. In Symposium on Self-Stabilizing Systems.
Springer, 386-400.

with Rocketfuel. ACM SIGCOMM Computer Communication Review 32, 4 (2002),
133-145.

David L. Tennenhouse and David J. Wetherall. 1996. Towards an Active Network
Architecture. SSIGCOMM Comput. Commun. Rev. 26, 2 (April 1996), 5-17. https:
//doi.org/10.1145/231699.231701

Christian Tschudin and Manolis Sifalakis. 2014. Named functions and cached
computations. In Consumer Communications and Networking Conference (CCNC),
2014 IEEE 11th. IEEE, 851-857.

Yingdi Yu, Alexander Afanasyev, David Clark, ke claffy, Van Jacobson, and Lixia
Zhang. 2015. Schematizing Trust in Named Data Networking. Proceedings of the
2nd International Conference on Information-Centric Networking - ICN ’15 (2015).
https://doi.org/10.1145/2810156.2810170

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica. 2012. Re-
silient distributed datasets: A fault-tolerant abstraction for in-memory cluster
computing. In Proceedings of the 9th USENIX conference on Networked Systems
Design and Implementation. USENIX Association, 2-2.

Irene Zhang, Adriana Szekeres, Dana Van Aken, Isaac Ackerman, Steven D.
Gribble, Arvind Krishnamurthy, and Henry M. Levy. 2014. Customizable and
Extensible Deployment for Mobile/Cloud Applications. In Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation (OSDI'14).
USENIX Association, Berkeley, CA, USA, 97-112. http://dLacm.org/citation.cfm?
1d=2685048.2685057

Lixia Zhang, Deborah Estrin, Jeffrey Burke, Van Jacobson, James D Thornton,
Diana K Smetters, Beichuan Zhang, Gene Tsudik, Dan Massey, Christos Pa-
padopoulos, et al. 2010. Named data networking (ndn) project. Relatério Técnico
NDN-0001, Xerox Palo Alto Research Center-PARC (2010).

Minsheng Zhang, Vince Lehman, and Lan Wang. 2017. Scalable Name-based
Data Synchronization for Named Data Networking. In IEEE Infocom (Infocom).
IEEE, IEEE Computer Society.

https://en.wikipedia.org/wiki/Thunk
http://www.ccnx.org/
http://dl.acm.org/citation.cfm?id=1012889.1012894
https://doi.org/10.1145/3098208.3098210
https://doi.org/10.1109/IC2EW.2016.56
https://doi.org/10.1145/2959689.2960077
http://dl.acm.org/citation.cfm?id=3291168.3291210
https://doi.org/10.1145/1965724.1965751
https://doi.org/10.1145/3152434.3152461
https://doi.org/10.1145/231699.231701
https://doi.org/10.1145/231699.231701
https://doi.org/10.1145/2810156.2810170
http://dl.acm.org/citation.cfm?id=2685048.2685057
http://dl.acm.org/citation.cfm?id=2685048.2685057

	Abstract
	1 Introduction
	2 CFN Architecture Overview
	2.1 Design Goals
	2.2 Key Concepts
	2.3 Building Blocks
	2.4 Terminology

	3 Programming Model and Naming
	3.1 Programming Model
	3.2 Naming
	3.3 Program execution overview

	4 System Components
	4.1 Program Membership Management
	4.2 Computation Graph
	4.3 Resource Pool Management
	4.4 Task scheduler
	4.5 Exceptions and Failure Recovery

	5 Evaluation
	5.1 Small topologies
	5.2 Rocketfuel topology
	5.3 Discussion

	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References

